{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-215:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-215:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-222:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-231:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-238:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-231:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-250:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-145:training_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"DestinationInputPortId":"-145:predict_ds","SourceOutputPortId":"-86:data"},{"DestinationInputPortId":"-222:input_data","SourceOutputPortId":"-215:data"},{"DestinationInputPortId":"-262:input_data","SourceOutputPortId":"-222:data"},{"DestinationInputPortId":"-238:input_data","SourceOutputPortId":"-231:data"},{"DestinationInputPortId":"-271:input_data","SourceOutputPortId":"-238:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-262:data"},{"DestinationInputPortId":"-86:input_data","SourceOutputPortId":"-271:data"},{"DestinationInputPortId":"-262:features","SourceOutputPortId":"-279:data"},{"DestinationInputPortId":"-271:features","SourceOutputPortId":"-279:data"},{"DestinationInputPortId":"-135:features_ds","SourceOutputPortId":"-279:data"},{"DestinationInputPortId":"-145:features","SourceOutputPortId":"-135:data"},{"DestinationInputPortId":"-250:options_data","SourceOutputPortId":"-145:predictions"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2016-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2019-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"conditionA=where(ta_sma_5_0>=ta_sma_10_0,1,0)","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2019-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2019-09-27","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"Comment":"","CommentCollapsed":true},{"Id":"-86","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-86"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-86","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"Comment":"","CommentCollapsed":true},{"Id":"-215","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"8","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-215"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-215"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-215","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"Comment":"","CommentCollapsed":true},{"Id":"-222","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-222"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-222"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-222","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"Comment":"","CommentCollapsed":true},{"Id":"-231","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"8","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-231"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-231"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-231","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"Comment":"","CommentCollapsed":true},{"Id":"-238","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"Comment":"","CommentCollapsed":true},{"Id":"-250","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 2\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([0.8,0.2])#1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.98\n context.options['hold_days'] =1\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":"100000","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-250"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-250","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"Comment":"","CommentCollapsed":true},{"Id":"-262","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-262"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-262"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-262","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"Comment":"","CommentCollapsed":true},{"Id":"-271","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-271"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-271"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-271","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"Comment":"","CommentCollapsed":true},{"Id":"-279","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nsum(conditionA,8)","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-279"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-279","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"Comment":"","CommentCollapsed":true},{"Id":"-135","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nconditionA\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-135"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-135","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":11,"Comment":"","CommentCollapsed":true},{"Id":"-145","ModuleId":"BigQuantSpace.stock_ranker.stock_ranker-v2","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"slim_data","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-145"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-145"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-145"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-145"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_model","NodeId":"-145"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"predict_ds","NodeId":"-145"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-145","OutputType":null},{"Name":"predictions","NodeId":"-145","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":12,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,61.739227294921875,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='33.827667236328125,228.86660766601562,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='762.7391967773438,19,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='336.780029296875,455.0861511230469,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1050.131591796875,122.73922729492188,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='374,551.43310546875,200,200'/><NodePosition Node='-86' Position='1015.913818359375,580.1292724609375,200,200'/><NodePosition Node='-215' Position='381,188,200,200'/><NodePosition Node='-222' Position='382.73919677734375,280,200,200'/><NodePosition Node='-231' Position='1057.653076171875,236,200,200'/><NodePosition Node='-238' Position='1038.04541015625,333.7823181152344,200,200'/><NodePosition Node='-250' Position='867.7247924804688,827.5558471679688,200,200'/><NodePosition Node='-262' Position='377,355,200,200'/><NodePosition Node='-271' Position='1032.3492431640625,442.6961364746094,200,200'/><NodePosition Node='-279' Position='716.6077270507812,184.69842529296875,200,200'/><NodePosition Node='-135' Position='709.9659423828125,350.7172546386719,200,200'/><NodePosition Node='-145' Position='597.7247924804688,703.7413940429688,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2019-09-30 17:30:40.490979] INFO: bigquant: instruments.v2 开始运行..
[2019-09-30 17:30:40.556978] INFO: bigquant: 命中缓存
[2019-09-30 17:30:40.566143] INFO: bigquant: instruments.v2 运行完成[0.075128s].
[2019-09-30 17:30:40.570725] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
[2019-09-30 17:30:40.667628] INFO: bigquant: 命中缓存
[2019-09-30 17:30:40.670680] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.099942s].
[2019-09-30 17:30:40.673993] INFO: bigquant: input_features.v1 开始运行..
[2019-09-30 17:30:40.717127] INFO: bigquant: 命中缓存
[2019-09-30 17:30:40.719503] INFO: bigquant: input_features.v1 运行完成[0.045485s].
[2019-09-30 17:30:40.771394] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-09-30 17:30:40.824145] INFO: bigquant: 命中缓存
[2019-09-30 17:30:40.826400] INFO: bigquant: general_feature_extractor.v7 运行完成[0.055015s].
[2019-09-30 17:30:40.829542] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-09-30 17:30:40.888342] INFO: bigquant: 命中缓存
[2019-09-30 17:30:40.890958] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.061402s].
[2019-09-30 17:30:40.894120] INFO: bigquant: instruments.v2 开始运行..
[2019-09-30 17:30:40.984984] INFO: bigquant: 命中缓存
[2019-09-30 17:30:40.987366] INFO: bigquant: instruments.v2 运行完成[0.093214s].
[2019-09-30 17:30:41.043945] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-09-30 17:30:41.108652] INFO: bigquant: 命中缓存
[2019-09-30 17:30:41.112085] INFO: bigquant: general_feature_extractor.v7 运行完成[0.068139s].
[2019-09-30 17:30:41.116055] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-09-30 17:30:41.240066] INFO: bigquant: 命中缓存
[2019-09-30 17:30:41.245095] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.129034s].
[2019-09-30 17:30:41.255371] INFO: bigquant: input_features.v1 开始运行..
[2019-09-30 17:30:41.353969] INFO: bigquant: 命中缓存
[2019-09-30 17:30:41.356665] INFO: bigquant: input_features.v1 运行完成[0.101296s].
[2019-09-30 17:30:41.360802] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-09-30 17:30:41.423769] INFO: bigquant: 命中缓存
[2019-09-30 17:30:41.429285] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.068457s].
[2019-09-30 17:30:41.432686] INFO: bigquant: join.v3 开始运行..
[2019-09-30 17:30:41.496797] INFO: bigquant: 命中缓存
[2019-09-30 17:30:41.501070] INFO: bigquant: join.v3 运行完成[0.068372s].
[2019-09-30 17:30:41.505858] INFO: bigquant: dropnan.v1 开始运行..
[2019-09-30 17:30:41.552124] INFO: bigquant: 命中缓存
[2019-09-30 17:30:41.554539] INFO: bigquant: dropnan.v1 运行完成[0.048666s].
[2019-09-30 17:30:41.558479] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-09-30 17:30:41.614924] INFO: bigquant: 命中缓存
[2019-09-30 17:30:41.623222] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.064727s].
[2019-09-30 17:30:41.626555] INFO: bigquant: dropnan.v1 开始运行..
[2019-09-30 17:30:41.689763] INFO: bigquant: 命中缓存
[2019-09-30 17:30:41.692234] INFO: bigquant: dropnan.v1 运行完成[0.065677s].
[2019-09-30 17:30:41.696139] INFO: bigquant: input_features.v1 开始运行..
[2019-09-30 17:30:41.745126] INFO: bigquant: 命中缓存
[2019-09-30 17:30:41.751843] INFO: bigquant: input_features.v1 运行完成[0.055686s].
[2019-09-30 17:30:41.760256] INFO: bigquant: stock_ranker.v2 开始运行..
[2019-09-30 17:30:41.820933] INFO: bigquant: stock_ranker_train.v5 开始运行..
[2019-09-30 17:30:43.167619] INFO: StockRanker: 特征预处理 ..
[2019-09-30 17:30:43.681777] INFO: StockRanker: prepare data: training ..
[2019-09-30 17:31:06.861786] INFO: StockRanker训练: f895094e 准备训练: 2165954 行数
[2019-09-30 17:31:07.153569] INFO: StockRanker训练: 正在训练 ..
[2019-09-30 17:36:39.065924] INFO: bigquant: stock_ranker_train.v5 运行完成[357.244971s].
[2019-09-30 17:36:39.069042] INFO: bigquant: stock_ranker_predict.v5 开始运行..
[2019-09-30 17:36:39.871007] INFO: StockRanker预测: /y_2019 ..
[2019-09-30 17:36:42.143856] INFO: bigquant: stock_ranker_predict.v5 运行完成[3.074788s].
[2019-09-30 17:36:42.356163] INFO: bigquant: stock_ranker.v2 运行完成[360.595893s].
[2019-09-30 17:36:42.441614] INFO: bigquant: backtest.v8 开始运行..
[2019-09-30 17:36:42.445253] INFO: bigquant: biglearning backtest:V8.2.16
[2019-09-30 17:36:42.455841] INFO: bigquant: product_type:stock by specified
[2019-09-30 17:36:42.635793] INFO: bigquant: cached.v2 开始运行..
[2019-09-30 17:36:42.728700] INFO: bigquant: 命中缓存
[2019-09-30 17:36:42.731630] INFO: bigquant: cached.v2 运行完成[0.095841s].
[2019-09-30 17:36:53.459650] INFO: algo: TradingAlgorithm V1.5.9
[2019-09-30 17:36:55.459318] INFO: algo: trading transform...
[2019-09-30 17:36:57.289282] INFO: algo: handle_splits get splits [dt:2019-06-19 00:00:00+00:00] [asset:Equity(1448 [000014.SZA]), ratio:0.9926470762865836]
[2019-09-30 17:36:57.295840] INFO: Position: position stock handle split[sid:1448, orig_amount:2100, new_amount:2115.0, orig_cost:9.530002831766023, new_cost:9.46, ratio:0.9926470762865836, last_sale_price:9.450000620646046]
[2019-09-30 17:36:57.298162] INFO: Position: after split: PositionStock(asset:Equity(1448 [000014.SZA]), amount:2115.0, cost_basis:9.46, last_sale_price:9.520000457763672)
[2019-09-30 17:36:57.300262] INFO: Position: returning cash: 5.25
[2019-09-30 17:36:58.300536] INFO: Performance: Simulated 182 trading days out of 182.
[2019-09-30 17:36:58.303140] INFO: Performance: first open: 2019-01-02 09:30:00+00:00
[2019-09-30 17:36:58.305829] INFO: Performance: last close: 2019-09-27 15:00:00+00:00
[2019-09-30 17:37:13.522987] INFO: bigquant: backtest.v8 运行完成[31.081367s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-fd256e42ba5c46beaa995f7df9dd4cfd"}/bigcharts-data-end
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-cb0c6a5610ad43b8b100d932a48b8b43"}/bigcharts-data-end
- 收益率7.03%
- 年化收益率9.86%
- 基准收益率27.97%
- 阿尔法-0.16
- 贝塔0.79
- 夏普比率0.37
- 胜率0.45
- 盈亏比1.48
- 收益波动率28.24%
- 信息比率-0.06
- 最大回撤22.44%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-fef810ecf6c1491a83d96cbe42f4ae8e"}/bigcharts-data-end