{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-215:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-215:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-222:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-231:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-238:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-107:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-220:input_1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"DestinationInputPortId":"-231:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-220:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-107:training_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","SourceOutputPortId":"-86:data"},{"DestinationInputPortId":"-222:input_data","SourceOutputPortId":"-215:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-222:data"},{"DestinationInputPortId":"-238:input_data","SourceOutputPortId":"-231:data"},{"DestinationInputPortId":"-86:input_data","SourceOutputPortId":"-238:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","SourceOutputPortId":"-107:model"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-86","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-86"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-86","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-215","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-215"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-215"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-215","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-222","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-222"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-222"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-222","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-231","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-231"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-231"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-231","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-238","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-107","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-107"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-107"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-107"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-107"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-107","OutputType":null},{"Name":"feature_gains","NodeId":"-107","OutputType":null},{"Name":"m_lazy_run","NodeId":"-107","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-220","ModuleId":"BigQuantSpace.factor_group__fast_backtest.factor_group__fast_backtest-v1","ModuleParameters":[{"Name":"rabalance_period","Value":21,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"long_port_is_big_factor","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"buy_commission_rate","Value":0.0003,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"stamp_tax","Value":0.001,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sell_commission_rate","Value":0.0003,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"rename_factor","Value":"position","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-220"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-220"}],"OutputPortsInternal":[],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='660,681,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1115.9749755859375,54.12516784667969,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><NodePosition Node='-86' Position='1078,418,200,200'/><NodePosition Node='-215' Position='381,188,200,200'/><NodePosition Node='-222' Position='385,280,200,200'/><NodePosition Node='-231' Position='1078,236,200,200'/><NodePosition Node='-238' Position='1081,327,200,200'/><NodePosition Node='-107' Position='638,561,200,200'/><NodePosition Node='-220' Position='777.0316162109375,785.89990234375,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2020-03-11 07:56:31.506690] INFO: bigquant: instruments.v2 开始运行..
[2020-03-11 07:56:31.531006] INFO: bigquant: 命中缓存
[2020-03-11 07:56:31.532447] INFO: bigquant: instruments.v2 运行完成[0.025745s].
[2020-03-11 07:56:31.534025] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
[2020-03-11 07:56:31.555568] INFO: bigquant: 命中缓存
[2020-03-11 07:56:31.556996] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.02296s].
[2020-03-11 07:56:31.558925] INFO: bigquant: input_features.v1 开始运行..
[2020-03-11 07:56:31.582179] INFO: bigquant: 命中缓存
[2020-03-11 07:56:31.583177] INFO: bigquant: input_features.v1 运行完成[0.02425s].
[2020-03-11 07:56:31.606291] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2020-03-11 07:56:31.631618] INFO: bigquant: 命中缓存
[2020-03-11 07:56:31.632913] INFO: bigquant: general_feature_extractor.v7 运行完成[0.026616s].
[2020-03-11 07:56:31.635034] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2020-03-11 07:56:31.657615] INFO: bigquant: 命中缓存
[2020-03-11 07:56:31.658860] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.023819s].
[2020-03-11 07:56:31.660845] INFO: bigquant: join.v3 开始运行..
[2020-03-11 07:56:31.682623] INFO: bigquant: 命中缓存
[2020-03-11 07:56:31.684015] INFO: bigquant: join.v3 运行完成[0.02316s].
[2020-03-11 07:56:31.685964] INFO: bigquant: dropnan.v1 开始运行..
[2020-03-11 07:56:31.710659] INFO: bigquant: 命中缓存
[2020-03-11 07:56:31.711683] INFO: bigquant: dropnan.v1 运行完成[0.025715s].
[2020-03-11 07:56:31.713382] INFO: bigquant: stock_ranker_train.v6 开始运行..
[2020-03-11 07:56:31.757566] INFO: bigquant: 命中缓存
[2020-03-11 07:56:31.891075] INFO: bigquant: stock_ranker_train.v6 运行完成[0.177669s].
[2020-03-11 07:56:31.893016] INFO: bigquant: instruments.v2 开始运行..
[2020-03-11 07:56:31.914528] INFO: bigquant: 命中缓存
[2020-03-11 07:56:31.915588] INFO: bigquant: instruments.v2 运行完成[0.022564s].
[2020-03-11 07:56:31.939190] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2020-03-11 07:56:31.959993] INFO: bigquant: 命中缓存
[2020-03-11 07:56:31.961453] INFO: bigquant: general_feature_extractor.v7 运行完成[0.02225s].
[2020-03-11 07:56:31.963719] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2020-03-11 07:56:31.984806] INFO: bigquant: 命中缓存
[2020-03-11 07:56:31.987821] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.024083s].
[2020-03-11 07:56:31.989754] INFO: bigquant: dropnan.v1 开始运行..
[2020-03-11 07:56:32.009396] INFO: bigquant: 命中缓存
[2020-03-11 07:56:32.010577] INFO: bigquant: dropnan.v1 运行完成[0.020819s].
[2020-03-11 07:56:32.012697] INFO: bigquant: stock_ranker_predict.v5 开始运行..
[2020-03-11 07:56:32.034245] INFO: bigquant: 命中缓存
[2020-03-11 07:56:32.035704] INFO: bigquant: stock_ranker_predict.v5 运行完成[0.022993s].
[2020-03-11 07:56:32.039481] INFO: bigquant: factor_group__fast_backtest.v1 开始运行..
[2020-03-11 07:56:32.987833] INFO: bigquant: input_features.v1 开始运行..
[2020-03-11 07:56:33.008746] INFO: bigquant: 命中缓存
[2020-03-11 07:56:33.009945] INFO: bigquant: input_features.v1 运行完成[0.022119s].
[2020-03-11 07:56:33.011259] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2020-03-11 07:56:33.654239] INFO: derived_feature_extractor: 提取完成 rank_factor=rank(factor), 0.261s
[2020-03-11 07:56:33.659461] INFO: derived_feature_extractor: 提取完成 factor_group = where(rank_factor > 0.8,4,where(rank_factor > 0.6,3,where(rank_factor > 0.4,2,where(rank_factor > 0.2,1,0)))), 0.004s
[2020-03-11 07:56:33.987156] INFO: derived_feature_extractor: /data, 1202058
[2020-03-11 07:56:34.707135] INFO: bigquant: derived_feature_extractor.v3 运行完成[1.695853s].
[2020-03-11 07:56:34.709150] INFO: bigquant: input_features.v1 开始运行..
[2020-03-11 07:56:34.729578] INFO: bigquant: 命中缓存
[2020-03-11 07:56:34.730942] INFO: bigquant: input_features.v1 运行完成[0.021787s].
[2020-03-11 07:56:34.753010] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2020-03-11 07:56:34.774059] INFO: bigquant: 命中缓存
[2020-03-11 07:56:34.775645] INFO: bigquant: general_feature_extractor.v7 运行完成[0.022639s].
[2020-03-11 07:56:34.778139] INFO: bigquant: join.v3 开始运行..
[2020-03-11 07:56:36.090430] INFO: join: /y_2015, 行数=565146/569698, 耗时=0.832776s
[2020-03-11 07:56:36.978941] INFO: join: /y_2016, 行数=636912/641546, 耗时=0.870611s
[2020-03-11 07:56:37.321589] INFO: join: 最终行数: 1202058
[2020-03-11 07:56:37.323829] INFO: bigquant: join.v3 运行完成[2.545685s].
[2020-03-11 07:56:43.465499] INFO: bigquant: factor_group__fast_backtest.v1 运行完成[11.426021s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-7e93798199cb4ccd806d379979a22b89"}/bigcharts-data-end