克隆策略

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-57:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-267:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-102:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-267:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-689:input_data","from_node_id":"-57:data"},{"to_node_id":"-102:options_data","from_node_id":"-689:data"},{"to_node_id":"-57:input_data","from_node_id":"-267:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nbuy_condition=where(mean(close,5)>mean(close,30),1,0)\nsell_condition=where(mean(close,5)<mean(close,30),1,0)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":false,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-03-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-06-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_FUND","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"159941.ZOF\n515030.HOF","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":2,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-57","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-57"},{"name":"features","node_id":"-57"}],"output_ports":[{"name":"data","node_id":"-57"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-102","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 获取今日的日期\n today = data.current_dt.strftime('%Y-%m-%d') \n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 记录用于买入股票的可用现金,因为是早盘卖股票,需要记录卖出的股票市值并在买入下单前更新可用现金;\n # 如果是早盘买尾盘卖,则卖出时不需更新可用现金,因为尾盘卖出股票所得现金无法使用\n cash_for_buy = context.portfolio.cash \n \n try:\n buy_stock = context.daily_stock_buy[today] # 当日符合买入条件的股票\n except:\n buy_stock=[] # 如果没有符合条件的股票,就设置为空\n \n try:\n sell_stock = context.daily_stock_sell[today] # 当日符合卖出条件的股票\n except:\n sell_stock=[] # 如果没有符合条件的股票,就设置为空\n \n # 需要卖出的股票:已有持仓中符合卖出条件的股票\n stock_to_sell = [ i for i in stock_hold_now if i in sell_stock ]\n # 需要买入的股票:没有持仓且符合买入条件的股票\n stock_to_buy = [ i for i in buy_stock if i not in stock_hold_now ] \n # 需要调仓的股票:已有持仓且不符合卖出条件的股票\n stock_to_adjust=[ i for i in stock_hold_now if i not in sell_stock ]\n \n # 如果有卖出信号\n if len(stock_to_sell)>0:\n for instrument in stock_to_sell:\n sid = context.symbol(instrument) # 将标的转化为equity格式\n cur_position = context.portfolio.positions[sid].amount # 持仓\n if cur_position > 0 and data.can_trade(sid):\n context.order_target_percent(sid, 0) # 全部卖出 \n # 因为设置的是早盘卖出早盘买入,需要根据卖出的股票更新可用现金;如果设置尾盘卖出早盘买入,则不需更新可用现金(可以删除下面的语句)\n cash_for_buy += stock_hold_now[instrument]\n \n # 如果有买入信号/有持仓\n if len(stock_to_buy)+len(stock_to_adjust)>0:\n weight = 1/(len(stock_to_buy)+len(stock_to_adjust)) # 每只股票的比重为等资金比例持有\n for instrument in stock_to_buy+stock_to_adjust:\n sid = context.symbol(instrument) # 将标的转化为equity格式\n if data.can_trade(sid):\n context.order_target_value(sid, weight*cash_for_buy) # 买入","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n df = context.options['data'].read_df()\n\n # 函数:求满足开仓条件的股票列表\n def open_pos_con(df):\n return list(df[df['buy_condition']>0].instrument)\n\n # 函数:求满足平仓条件的股票列表\n def close_pos_con(df):\n return list(df[df['sell_condition']>0].instrument)\n\n # 每日买入股票的数据框\n context.daily_stock_buy= df.groupby('date').apply(open_pos_con)\n # 每日卖出股票的数据框\n context.daily_stock_sell= df.groupby('date').apply(close_pos_con)","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"open","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-102"},{"name":"options_data","node_id":"-102"},{"name":"history_ds","node_id":"-102"},{"name":"benchmark_ds","node_id":"-102"},{"name":"trading_calendar","node_id":"-102"}],"output_ports":[{"name":"raw_perf","node_id":"-102"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-689","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-689"},{"name":"features","node_id":"-689"}],"output_ports":[{"name":"data","node_id":"-689"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-267","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"bar1d_CN_FUND","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-267"},{"name":"features","node_id":"-267"}],"output_ports":[{"name":"data","node_id":"-267"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='750,-12.72813606262207,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1189,-23,200,200'/><node_position Node='-57' Position='974.9930419921875,214,200,200'/><node_position Node='-102' Position='870,374,200,200'/><node_position Node='-689' Position='967,277,200,200'/><node_position Node='-267' Position='978,126.99308776855469,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [6]:
    # 本代码由可视化策略环境自动生成 2021年11月19日 19:10
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m3_initialize_bigquant_run(context):
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m3_handle_data_bigquant_run(context, data):
        # 获取今日的日期
        today = data.current_dt.strftime('%Y-%m-%d')  
        # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表
        stock_hold_now = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 记录用于买入股票的可用现金,因为是早盘卖股票,需要记录卖出的股票市值并在买入下单前更新可用现金;
        # 如果是早盘买尾盘卖,则卖出时不需更新可用现金,因为尾盘卖出股票所得现金无法使用
        cash_for_buy = context.portfolio.cash    
        
        try:
            buy_stock = context.daily_stock_buy[today]  # 当日符合买入条件的股票
        except:
            buy_stock=[]  # 如果没有符合条件的股票,就设置为空
        
        try:
            sell_stock = context.daily_stock_sell[today]  # 当日符合卖出条件的股票
        except:
            sell_stock=[] # 如果没有符合条件的股票,就设置为空
        
        # 需要卖出的股票:已有持仓中符合卖出条件的股票
        stock_to_sell = [ i for i in stock_hold_now if i in sell_stock ]
        # 需要买入的股票:没有持仓且符合买入条件的股票
        stock_to_buy = [ i for i in buy_stock if i not in stock_hold_now ]  
        # 需要调仓的股票:已有持仓且不符合卖出条件的股票
        stock_to_adjust=[ i for i in stock_hold_now if i not in sell_stock ]
        
        # 如果有卖出信号
        if len(stock_to_sell)>0:
            for instrument in stock_to_sell:
                sid = context.symbol(instrument) # 将标的转化为equity格式
                cur_position = context.portfolio.positions[sid].amount # 持仓
                if cur_position > 0 and data.can_trade(sid):
                    context.order_target_percent(sid, 0) # 全部卖出 
                    # 因为设置的是早盘卖出早盘买入,需要根据卖出的股票更新可用现金;如果设置尾盘卖出早盘买入,则不需更新可用现金(可以删除下面的语句)
                    cash_for_buy += stock_hold_now[instrument]
        
        # 如果有买入信号/有持仓
        if len(stock_to_buy)+len(stock_to_adjust)>0:
            weight = 1/(len(stock_to_buy)+len(stock_to_adjust)) # 每只股票的比重为等资金比例持有
            for instrument in stock_to_buy+stock_to_adjust:
                sid = context.symbol(instrument) # 将标的转化为equity格式
                if  data.can_trade(sid):
                    context.order_target_value(sid, weight*cash_for_buy) # 买入
    # 回测引擎:准备数据,只执行一次
    def m3_prepare_bigquant_run(context):
        # 加载预测数据
        df = context.options['data'].read_df()
    
        # 函数:求满足开仓条件的股票列表
        def open_pos_con(df):
            return list(df[df['buy_condition']>0].instrument)
    
        # 函数:求满足平仓条件的股票列表
        def close_pos_con(df):
            return list(df[df['sell_condition']>0].instrument)
    
        # 每日买入股票的数据框
        context.daily_stock_buy= df.groupby('date').apply(open_pos_con)
        # 每日卖出股票的数据框
        context.daily_stock_sell= df.groupby('date').apply(close_pos_con)
    
    m1 = M.input_features.v1(
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    buy_condition=where(mean(close,5)>mean(close,30),1,0)
    sell_condition=where(mean(close,5)<mean(close,30),1,0)""",
        m_cached=False
    )
    
    m2 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2019-03-01'),
        end_date=T.live_run_param('trading_date', '2021-06-01'),
        market='CN_FUND',
        instrument_list="""159941.ZOF
    515030.HOF""",
        max_count=0
    )
    
    m6 = M.use_datasource.v1(
        instruments=m2.data,
        features=m1.data,
        datasource_id='bar1d_CN_FUND',
        start_date='',
        end_date=''
    )
    
    m8 = M.derived_feature_extractor.v3(
        input_data=m6.data,
        features=m1.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m4 = M.dropnan.v2(
        input_data=m8.data
    )
    
    m3 = M.trade.v4(
        instruments=m2.data,
        options_data=m4.data,
        start_date='',
        end_date='',
        initialize=m3_initialize_bigquant_run,
        handle_data=m3_handle_data_bigquant_run,
        prepare=m3_prepare_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='open',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='后复权',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark=''
    )
    
    • 收益率68.38%
    • 年化收益率27.08%
    • 基准收益率45.58%
    • 阿尔法0.19
    • 贝塔0.25
    • 夏普比率1.66
    • 胜率0.78
    • 盈亏比12.0
    • 收益波动率13.18%
    • 信息比率0.02
    • 最大回撤9.12%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-77682454d12b4144965255ddb1f47627"}/bigcharts-data-end