{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-57:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-267:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-102:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-267:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-689:input_data","from_node_id":"-57:data"},{"to_node_id":"-102:options_data","from_node_id":"-689:data"},{"to_node_id":"-57:input_data","from_node_id":"-267:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nbuy_condition=where(mean(close,5)>mean(close,30),1,0)\nsell_condition=where(mean(close,5)<mean(close,30),1,0)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":false,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-03-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-06-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_FUND","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"159941.ZOF\n515030.HOF","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":2,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-57","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-57"},{"name":"features","node_id":"-57"}],"output_ports":[{"name":"data","node_id":"-57"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-102","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 获取今日的日期\n today = data.current_dt.strftime('%Y-%m-%d') \n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 记录用于买入股票的可用现金,因为是早盘卖股票,需要记录卖出的股票市值并在买入下单前更新可用现金;\n # 如果是早盘买尾盘卖,则卖出时不需更新可用现金,因为尾盘卖出股票所得现金无法使用\n cash_for_buy = context.portfolio.cash \n \n try:\n buy_stock = context.daily_stock_buy[today] # 当日符合买入条件的股票\n except:\n buy_stock=[] # 如果没有符合条件的股票,就设置为空\n \n try:\n sell_stock = context.daily_stock_sell[today] # 当日符合卖出条件的股票\n except:\n sell_stock=[] # 如果没有符合条件的股票,就设置为空\n \n # 需要卖出的股票:已有持仓中符合卖出条件的股票\n stock_to_sell = [ i for i in stock_hold_now if i in sell_stock ]\n # 需要买入的股票:没有持仓且符合买入条件的股票\n stock_to_buy = [ i for i in buy_stock if i not in stock_hold_now ] \n # 需要调仓的股票:已有持仓且不符合卖出条件的股票\n stock_to_adjust=[ i for i in stock_hold_now if i not in sell_stock ]\n \n # 如果有卖出信号\n if len(stock_to_sell)>0:\n for instrument in stock_to_sell:\n sid = context.symbol(instrument) # 将标的转化为equity格式\n cur_position = context.portfolio.positions[sid].amount # 持仓\n if cur_position > 0 and data.can_trade(sid):\n context.order_target_percent(sid, 0) # 全部卖出 \n # 因为设置的是早盘卖出早盘买入,需要根据卖出的股票更新可用现金;如果设置尾盘卖出早盘买入,则不需更新可用现金(可以删除下面的语句)\n cash_for_buy += stock_hold_now[instrument]\n \n # 如果有买入信号/有持仓\n if len(stock_to_buy)+len(stock_to_adjust)>0:\n weight = 1/(len(stock_to_buy)+len(stock_to_adjust)) # 每只股票的比重为等资金比例持有\n for instrument in stock_to_buy+stock_to_adjust:\n sid = context.symbol(instrument) # 将标的转化为equity格式\n if data.can_trade(sid):\n context.order_target_value(sid, weight*cash_for_buy) # 买入","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n df = context.options['data'].read_df()\n\n # 函数:求满足开仓条件的股票列表\n def open_pos_con(df):\n return list(df[df['buy_condition']>0].instrument)\n\n # 函数:求满足平仓条件的股票列表\n def close_pos_con(df):\n return list(df[df['sell_condition']>0].instrument)\n\n # 每日买入股票的数据框\n context.daily_stock_buy= df.groupby('date').apply(open_pos_con)\n # 每日卖出股票的数据框\n context.daily_stock_sell= df.groupby('date').apply(close_pos_con)","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"open","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-102"},{"name":"options_data","node_id":"-102"},{"name":"history_ds","node_id":"-102"},{"name":"benchmark_ds","node_id":"-102"},{"name":"trading_calendar","node_id":"-102"}],"output_ports":[{"name":"raw_perf","node_id":"-102"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-689","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-689"},{"name":"features","node_id":"-689"}],"output_ports":[{"name":"data","node_id":"-689"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-267","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"bar1d_CN_FUND","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-267"},{"name":"features","node_id":"-267"}],"output_ports":[{"name":"data","node_id":"-267"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='750,-12.72813606262207,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1189,-23,200,200'/><node_position Node='-57' Position='974.9930419921875,214,200,200'/><node_position Node='-102' Position='870,374,200,200'/><node_position Node='-689' Position='967,277,200,200'/><node_position Node='-267' Position='978,126.99308776855469,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-10-30 21:02:32.443952] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-10-30 21:02:33.008448] INFO: moduleinvoker: input_features.v1 运行完成[0.568323s].
[2021-10-30 21:02:33.028779] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-10-30 21:02:33.079397] INFO: moduleinvoker: instruments.v2 运行完成[0.050622s].
[2021-10-30 21:02:33.090171] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2021-10-30 21:02:34.923903] INFO: moduleinvoker: use_datasource.v1 运行完成[1.833721s].
[2021-10-30 21:02:34.940371] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-10-30 21:02:35.243697] INFO: derived_feature_extractor: 提取完成 buy_condition=where(mean(close,5)>mean(close,30),1,0), 0.137s
[2021-10-30 21:02:35.253859] INFO: derived_feature_extractor: 提取完成 sell_condition=where(mean(close,5)[2021-10-30 21:02:35.302881] INFO: derived_feature_extractor: /data, 851
[2021-10-30 21:02:35.480640] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.540261s].
[2021-10-30 21:02:35.503610] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-10-30 21:02:35.621034] INFO: dropnan: /data, 851/851
[2021-10-30 21:02:35.642417] INFO: dropnan: 行数: 851/851
[2021-10-30 21:02:35.646538] INFO: moduleinvoker: dropnan.v2 运行完成[0.142956s].
[2021-10-30 21:02:35.785755] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-10-30 21:02:35.798255] INFO: backtest: biglearning backtest:V8.5.0
[2021-10-30 21:02:36.752140] INFO: backtest: product_type:stock by specified
[2021-10-30 21:02:37.042836] INFO: moduleinvoker: cached.v2 开始运行..
[2021-10-30 21:02:37.337377] INFO: backtest: 读取基金行情完成:1094
[2021-10-30 21:02:37.433242] INFO: moduleinvoker: cached.v2 运行完成[0.390409s].
[2021-10-30 21:02:37.488394] INFO: algo: TradingAlgorithm V1.8.5
[2021-10-30 21:02:46.804241] INFO: algo: trading transform...
[2021-10-30 21:02:49.320098] INFO: Performance: Simulated 548 trading days out of 548.
[2021-10-30 21:02:49.321566] INFO: Performance: first open: 2019-03-01 09:30:00+00:00
[2021-10-30 21:02:49.322640] INFO: Performance: last close: 2021-06-01 15:00:00+00:00
[2021-10-30 21:02:50.957220] INFO: moduleinvoker: backtest.v8 运行完成[15.171471s].
[2021-10-30 21:02:50.958762] INFO: moduleinvoker: trade.v4 运行完成[15.303223s].
- 收益率68.38%
- 年化收益率27.08%
- 基准收益率45.58%
- 阿尔法0.19
- 贝塔0.25
- 夏普比率1.66
- 胜率0.78
- 盈亏比12.0
- 收益波动率13.18%
- 信息比率0.02
- 最大回撤9.12%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-77682454d12b4144965255ddb1f47627"}/bigcharts-data-end