{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-228:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-234:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-123:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-550:input_1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-575:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-228:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-235:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-235:input_data","SourceOutputPortId":"-228:data"},{"DestinationInputPortId":"-253:data1","SourceOutputPortId":"-234:data"},{"DestinationInputPortId":"-582:data1","SourceOutputPortId":"-253:data"},{"DestinationInputPortId":"-253:data2","SourceOutputPortId":"-235:data"},{"DestinationInputPortId":"-234:features","SourceOutputPortId":"-270:data"},{"DestinationInputPortId":"-123:options_data","SourceOutputPortId":"-185:data_1"},{"DestinationInputPortId":"-123:benchmark_ds","SourceOutputPortId":"-550:data_1"},{"DestinationInputPortId":"-575:features","SourceOutputPortId":"-570:data"},{"DestinationInputPortId":"-582:data2","SourceOutputPortId":"-575:data"},{"DestinationInputPortId":"-121:input_1","SourceOutputPortId":"-582:data"},{"DestinationInputPortId":"-185:input_1","SourceOutputPortId":"-297:data_1"},{"DestinationInputPortId":"-185:input_2","SourceOutputPortId":"-297:data_2"},{"DestinationInputPortId":"-185:input_3","SourceOutputPortId":"-297:data_3"},{"DestinationInputPortId":"-297:input_1","SourceOutputPortId":"-121:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2018-09-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2022-09-28","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\nin_csi300_0\nin_csi500_0\nin_sse50_0\nindustry_sw_level1_0\nst_status_0\n\n# 选股条件\ncond1=1\n\n# 排序选股\ncond2=rank(fs_operating_revenue_yoy_0 * -1)*0.13+\\\nrank(fs_operating_revenue_0 * -1)*0.13+\\\nrank(fs_net_profit_yoy_0 * -1)*0.13+\\\nrank(pe_ttm_0 * -1)*0.13+\\\nrank(market_cap_0/fs_net_cash_flow_ttm_0 * 1)*0.13+\\\nrank(ps_ttm_0 * 1)*0.13+\\\nrank(pb_lf_0 * 1)*0.13+\\\nrank(fs_roe_ttm_0 * -1)*0.13\n\n# 进场条件\ncond3=1\n \n# 卖出条件\ncond4=1\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-228","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"300","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-228"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-228"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-228","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-234","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"industry_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-234"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-234"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-234","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-253","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-253"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-253"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-253","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-235","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-235"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-235"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-235","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-270","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"concept\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-270"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-270","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"获取股票概念,并匹配选中的概念","CommentCollapsed":false},{"Id":"-123","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"#--------------------------------------------------------------------\n# 卖出条件\n#-------------------------------------------------------------------- \ndef sell_action(context, data):\n date = data.current_dt.strftime('%Y-%m-%d')\n hit_stop_stock = context.stock_hit_stop \n \n try:\n today_enter_stock = context.enter_daily_df.loc[date] \n except KeyError as e:\n today_enter_stock = []\n try:\n today_exit_stock = context.exit_daily_df.loc[date] \n except KeyError as e:\n today_exit_stock = []\n \n target_stock_to_buy = [i for i in context.selected_stock if i in today_enter_stock ] \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] # 当前持仓股票\n \n if context.trading_day_index % context.sell_frequency == 0:\n stock_to_sell = [i for i in stock_hold_now if i in today_exit_stock] # 要卖出的股票\n stock_buy_and_sell = [i for i in stock_to_sell if i in target_stock_to_buy]\n if context.is_sell_willbuy_stock == False: # 要买入的股票不卖出,但该票也不再买入\n stock_to_sell.extend(hit_stop_stock) # 将触发个股风控的股票融入到卖出票池\n stock_to_sell = [i for i in stock_to_sell if i not in stock_buy_and_sell] # 进行更新而已\n elif context.is_sell_willbuy_stock == True: # 要买入的股票依然要卖出,该票不再买入\n stock_to_sell.extend(hit_stop_stock)\n \n # 买入时需要过滤的股票\n context.cannot_buy_stock = stock_buy_and_sell\n \n for stock in stock_to_sell:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0)\n del context.portfolio.positions[context.symbol(stock)]\n\n\n#--------------------------------------------------------------------\n# 买入条件\n#-------------------------------------------------------------------- \ndef buy_action(context, data):\n date = data.current_dt.strftime('%Y-%m-%d')\n \n try:\n today_enter_stock = context.enter_daily_df.loc[date] \n except KeyError as e:\n today_enter_stock = []\n try:\n today_exit_stock = context.exit_daily_df.loc[date] \n except KeyError as e:\n today_exit_stock = []\n \n target_stock_to_buy = [i for i in context.selected_stock if i in today_enter_stock] \n target_stock_to_buy = [s for s in target_stock_to_buy if s not in context.cannot_buy_stock] # 进行更新,不能买入的股票要过滤\n \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] # 当前持仓股票\n \n # 确定股票权重\n if context.order_weight_method == 'equal_weight':\n equal_weight = 1 / context.max_stock_count\n \n portfolio_value = context.portfolio.portfolio_value\n position_current_value = {pos.sid: pos.amount* pos.last_sale_price for i,pos in context.portfolio.positions.items()}\n \n # 买入\n if context.trading_day_index % context.buy_frequency == 0:\n if len(stock_hold_now) >= context.max_stock_count:\n return \n \n today_buy_count = 0\n if context.trade_mode == '轮动':\n for s in target_stock_to_buy:\n if today_buy_count + len(stock_hold_now) >= context.max_stock_count: # 超出最大持仓数量\n break\n if data.can_trade(context.symbol(s)):\n order_target_percent(context.symbol(s), equal_weight)\n today_buy_count += 1\n else:\n if context.can_duplication_buy == True: # 可以重复买入,多一份买入\n for s in target_stock_to_buy:\n if today_buy_count + len(stock_hold_now) >= context.max_stock_count: # 超出最大持仓数量\n break\n \n if data.can_trade(context.symbol(s)):\n if context.symbol(s) in position_current_weight:\n curr_value = position_current_value.get(context.symbol(s)) \n order_value(context.symbol(s), min(context.max_stock_weight * portfolio_value - curr_value, equal_weight*portfolio_value))\n else:\n order_value(context.symbol(s), equal_weight*portfolio_value)\n today_buy_count += 1\n\n elif context.can_duplication_buy == False: # 不可以重复买入,不买\n for s in target_stock_to_buy:\n if today_buy_count + len(stock_hold_now) >= context.max_stock_count: # 超出最大持仓数量\n break\n if s in stock_hold_now:\n continue\n else:\n if data.can_trade(context.symbol(s)):\n order_target_percent(context.symbol(s), equal_weight)\n today_buy_count += 1\n\n \n#--------------------------------------------------------------------\n# 风控体系\n#-------------------------------------------------------------------- \ndef market_risk_manage(context, data):\n \"\"\"大盘风控\"\"\"\n date = data.current_dt.strftime('%Y-%m-%d')\n if type(context.index_signal_data) == pd.DataFrame:\n current_signal = context.index_signal_data.loc[date]['signal']\n if current_signal == 'short': \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] \n # 平掉所有股票\n for stock in stock_hold_now:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0) \n print('大盘出现止损信号, 平掉全部仓位,并关闭交易!')\n context.market_risk_signal = 'short'\n else:\n context.market_risk_signal = 'long'\n\n \n \ndef strategy_risk_manage(context, data):\n \"\"\"策略风控\"\"\"\n if context.strategy_risk_conf == []: # 没有设置策略风控\n context.strategy_risk_signal = 'long'\n \n else:\n for rm in context.strategy_risk_conf:\n if rm['method'] == 'strategy_percent_stopwin':\n pct = rm['params']['percent']\n portfolio_value = context.portfolio.portfolio_value \n if portfolio_value / context.capital_base - 1 > pct: \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] \n # 平掉所有股票\n for stock in stock_hold_now:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0) \n print('策略出现止盈信号, 平掉全部仓位,并关闭交易!')\n context.strategy_risk_signal = 'short' \n \n \n if rm['method'] == 'strategy_percent_stoploss':\n pct = rm['params']['percent']\n portfolio_value = context.portfolio.portfolio_value \n if portfolio_value / context.capital_base -1 < pct:\n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] \n # 平掉所有股票\n for stock in stock_hold_now:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0) \n print('策略出现止损信号, 平掉全部仓位,并关闭交易!')\n context.strategy_risk_signal = 'short'\n\n \ndef stock_risk_manage(context, data):\n \"\"\"个股风控\"\"\"\n position_current_pnl = {pos.sid: (pos.last_sale_price-pos.cost_basis)/pos.cost_basis for i,pos in context.portfolio.positions.items()}\n \n for rm in context.stock_risk_conf:\n params_pct = rm['params']['percent']\n if rm['method'] == 'stock_percent_stopwin':\n for sid,pnl_pct in position_current_pnl.items(): \n if pnl_pct > params_pct:\n context.stock_hit_stop.append(sid.symbol)\n \n if rm['method'] == 'stock_percent_stoploss':\n for sid,pnl_pct in position_current_pnl.items():\n if pnl_pct < params_pct:\n context.stock_hit_stop.append(sid.symbol)\n\n\n\n\n# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \"\"\"每日运行策略逻辑\"\"\"\n market_risk_manage(context, data)\n strategy_risk_manage(context, data)\n \n if context.market_risk_signal == 'short': return\n if context.strategy_risk_signal == 'short': return\n\n stock_risk_manage(context, data)\n if context.trading_day_index % context.rebalance_periods == 0:\n sell_action(context, data)\n buy_action(context, data)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n \n load_data = context.options['data'].read_pickle()\n context.signal_daily_stock = load_data['df1'].groupby('date').apply(lambda x:list(x.instrument))\n context.enter_daily_df = load_data['df2'].groupby('date').apply(lambda x:list(x.instrument))\n context.exit_daily_df = load_data['df3'].groupby('date').apply(lambda x:list(x.instrument))\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"\ndef prepare_index_data(context):\n \"\"\"准备指数数据\"\"\"\n if context.market_risk_conf != []:\n if len(context.market_risk_conf) == 1:\n index_code = context.market_risk_conf[0]['params']['index_code']\n start_date = '2005-01-01'\n end_date = context.end_date\n index_data = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code], start_date=start_date, end_date=end_date).set_index('date')\n \n if context.market_risk_conf[0]['method'] == 'market_ma_stoploss':\n ma_periods = int(context.market_risk_conf[0]['params']['ma_periods'])\n index_data['ma_%s'%ma_periods] = index_data['close'].rolling(ma_periods).mean()\n index_data['signal'] = np.where(index_data['close'] > index_data['ma_%s'%ma_periods], 'long', 'short')\n\n elif context.market_risk_conf[0]['method'] == 'market_fallrange_stoploss':\n days = context.market_risk_conf[0]['params']['days']\n fallrange = context.market_risk_conf[0]['params']['fallrange']\n index_data['signal'] = np.where(index_data['close']/index_data['close'].shift(days)-1 <= fallrange, 'long', 'short')\n context.index_signal_data = index_data \n \n if len(context.market_risk_conf) == 2:\n start_date = '2005-01-01'\n end_date = context.end_date \n if context.market_risk_conf[0]['method'] == 'market_ma_stoploss': \n index_code_1 = context.market_risk_conf[0]['params']['index_code']\n index_data_1 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_1], start_date=start_date, end_date=end_date).set_index('date')\n ma_periods = int(context.market_risk_conf[0]['params']['ma_periods'])\n \n index_code_2 = context.market_risk_conf[1]['params']['index_code']\n index_data_2 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_2], start_date=start_date, end_date=end_date).set_index('date')\n days = context.market_risk_conf[1]['params']['days']\n fallrange = context.market_risk_conf[1]['params']['fallrange']\n else:\n index_code_1 = context.market_risk_conf[1]['params']['index_code']\n index_data_1 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_1], start_date=start_date, end_date=end_date).set_index('date')\n ma_periods = int(context.market_risk_conf[1]['params']['ma_periods'])\n \n index_code_2 = context.market_risk_conf[0]['params']['index_code']\n index_data_2 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_2], start_date=start_date, end_date=end_date).set_index('date')\n days = context.market_risk_conf[0]['params']['days']\n fallrange = context.market_risk_conf[0]['params']['fallrange'] \n \n index_data_1['ma_%s'%ma_periods] = index_data_1['close'].rolling(ma_periods).mean()\n index_data_1['signal_1'] = np.where(index_data_1['close'] > index_data_1['ma_%s'%ma_periods], 1, 0)\n signal_1 = index_data_1[['signal_1']].reset_index() \n index_data_2['signal_2'] = np.where(index_data_2['close']/index_data_2['close'].shift(days)-1 <= fallrange, 1, 0)\n signal_2 = index_data_2[['signal_2']].reset_index()\n signal = pd.merge(signal_1,signal_2).set_index('date')\n signal['signal_sum'] = signal['signal_1'] + signal['signal_2']\n signal['signal'] = np.where(signal['signal_sum']>0,'long','short') \n context.index_signal_data = signal\n else:\n context.index_signal_data = None \n\ndef bigquant_run(context):\n context.set_commission(PerOrder(buy_cost=0.003, sell_cost=0.004, min_cost=5))\n context.selected_stock = []\n context.trade_mode = '轮动'\n\n if context.trade_mode == '轮动':\n context.buy_frequency = 1\n context.sell_frequency = 1\n context.rebalance_periods = 5 # 调仓周期\n context.max_stock_count = 5 # 最大持仓股票数量\n context.order_weight_method = 'equal_weight' # 买入方式\n context.is_sell_willbuy_stock = False # 卖出欲买进股票 \n else:\n # 买入条件参数\n context.stock_select_frequency = 1 # 选股频率\n context.order_weight_method = 'equal_weight' # 买入方式\n context.buy_frequency = 2 # 买入频率\n context.can_duplication_buy = False # 是否可重复买入\n context.max_stock_count = 5 # 最大持仓股票数量\n context.max_stock_weight = 1 # 个股最大持仓比重\n\n # 卖出条件参数\n context.sell_frequency = 10 # 卖出频率\n context.is_sell_willbuy_stock = False # 卖出欲买进股票 \n\n # 风控参数 \n context.stock_risk_conf = [] # 支持多选 无:[]\n context.strategy_risk_conf = [] # 支持多选 无:[]\n context.market_risk_conf = [] # 支持多选, 无: []\n \n prepare_index_data(context)\n slippage_type = 'price'\n from zipline.finance.slippage import SlippageModel\n class FixedPriceSlippage(SlippageModel):\n # 指定初始化函数\n def __init__(self, spreads, price_field_buy, price_field_sell):\n # 存储spread的字典,用股票代码作为key\n self.spreads = spreads\n self._price_field_buy = price_field_buy\n self._price_field_sell = price_field_sell\n def process_order(self, data, order, bar_volume=0, trigger_check_price=0):\n if order.limit is None:\n price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell\n price_base = data.current(order.asset, price_field)\n if slippage_type == 'price':\n price = price_base + (self.spreads / 2) if order.amount > 0 else price_base - (self.spreads / 2)\n else:\n price = price_base * (1.0 + self.spreads / 2) if order.amount > 0 else price_base * (1.0 - self.spreads / 2)\n else:\n price = order.limit\n # 返回希望成交的价格和数量\n return (price, order.amount)\n # 设置price_field\n fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='open', spreads=0.02)\n context.set_slippage(us_equities=fix_slippage)","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n \n \"\"\"每日盘前更新股票池\"\"\"\n frequency = context.rebalance_periods if context.trade_mode == '轮动' else context.stock_select_frequency\n if context.trading_day_index % frequency == 0:\n date = data.current_dt.strftime('%Y-%m-%d')\n try:\n context.selected_stock = context.signal_daily_stock[date] \n except KeyError as e:\n context.selected_stock = []\n \n \"\"\"初始化风控参数\"\"\"\n context.strategy_risk_signal = 'long'\n context.market_risk_signal = 'long' \n context.stock_hit_stop = []\n context.cannot_buy_stock = []\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":"3000","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-123"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-123"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-123"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-123"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-123"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-123","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-185","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n df1 = input_1.read_df()\n df2 = input_2.read_df()\n df3 = input_3.read_df()\n\n if len(df1.index.names) == 2:\n df1.index.names = [None, None]\n else:\n df1.index.names = [None]\n \n df = {'df1':df1,'df2':df2,'df3':df3}\n ds = DataSource.write_pickle(df)\n return Outputs(data_1=ds)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-185"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-185"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-185"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-185","OutputType":null},{"Name":"data_2","NodeId":"-185","OutputType":null},{"Name":"data_3","NodeId":"-185","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-550","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_index):\n # 示例代码如下。在这里编写您的代码\n start_date=input_1.read_pickle()['start_date']\n end_date=input_1.read_pickle()['end_date']\n df = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[input_index],start_date=start_date,end_date=end_date,fields=['close'])\n data_1 = DataSource.write_df(df)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"input_1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{'input_index':'000300.HIX'}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"data_1","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-550"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-550"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-550"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-550","OutputType":null},{"Name":"data_2","NodeId":"-550","OutputType":null},{"Name":"data_3","NodeId":"-550","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-570","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"suspended","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-570"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-570","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"获取股票停牌数据","CommentCollapsed":false},{"Id":"-575","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"stock_status_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-575"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-575"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-575","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-582","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-582"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-582"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-582","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-297","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_df()\n # 缺失值处理\n # if len(df)!=0:\n # df.dropna(inplace=True)\n \n # 选股条件\n if len(df)!=0:\n df_filter1 = df[df['cond1']>0]\n else:\n df_filter1 = df\n \n # 指标排序\n if len(df_filter1)!=0:\n df_filter2 = df_filter1.groupby('date').apply(lambda x:x.sort_values(by=['cond2'],ascending=True))\n else:\n df_filter2 = df_filter1\n \n #输出条件过滤股票池\n data_1 = DataSource.write_df(df_filter2)\n\n \n # 进场条件\n if len(df)!=0:\n df_buy = df[df['cond3']>0]\n else:\n df_buy = df\n # 输出满足进场条件的股票池\n data_2 = DataSource.write_df(df_buy)\n\n \n # 出场条件\n if len(df)!=0:\n df_sell = df[df['cond4']>0]\n else:\n df_sell = df\n # 输出满足出场条件的股票池\n data_3 = DataSource.write_df(df_sell) \n \n return Outputs(data_1=data_1, data_2=data_2, data_3=data_3)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-297"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-297"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-297"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-297","OutputType":null},{"Name":"data_2","NodeId":"-297","OutputType":null},{"Name":"data_3","NodeId":"-297","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":22,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-121","ModuleId":"BigQuantSpace.stockpool_select.stockpool_select-v6","ModuleParameters":[{"Name":"self_instruments","Value":"[]","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_concepts","Value":"[]","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_industrys","Value":"[360000,710000,220000,460000,370000,330000,340000,720000,240000,630000,280000,420000,510000,640000,610000,620000,650000,230000,410000,350000,490000,110000,210000,480000,730000,450000,270000,430000]","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_indexs","Value":"['全A股']","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_st","Value":"过滤","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_suspend","Value":"过滤","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-121"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-121","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='473,-148,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='697,-231,200,200'/><NodePosition Node='-228' Position='479,-22,200,200'/><NodePosition Node='-234' Position='145,-30,200,200'/><NodePosition Node='-253' Position='341,161,200,200'/><NodePosition Node='-235' Position='483,70,200,200'/><NodePosition Node='-270' Position='124,-149,200,200'/><NodePosition Node='-123' Position='563,687,200,200'/><NodePosition Node='-185' Position='454,575,200,200'/><NodePosition Node='-550' Position='878,511,200,200'/><NodePosition Node='-570' Position='960,-137,200,200'/><NodePosition Node='-575' Position='840,-16,200,200'/><NodePosition Node='-582' Position='557,241,200,200'/><NodePosition Node='-297' Position='453,455,200,200'/><NodePosition Node='-121' Position='457.305419921875,355.8680725097656,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2022-09-29 14:38:51.589315] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-09-29 14:38:51.633266] INFO: moduleinvoker: 命中缓存
[2022-09-29 14:38:51.665257] INFO: moduleinvoker: instruments.v2 运行完成[0.075955s].
[2022-09-29 14:38:51.803393] INFO: moduleinvoker: cached.v3 开始运行..
[2022-09-29 14:38:51.814982] INFO: moduleinvoker: 命中缓存
[2022-09-29 14:38:51.817814] INFO: moduleinvoker: cached.v3 运行完成[0.014427s].
[2022-09-29 14:38:51.850702] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-09-29 14:38:51.859434] INFO: moduleinvoker: 命中缓存
[2022-09-29 14:38:51.861648] INFO: moduleinvoker: input_features.v1 运行完成[0.010961s].
[2022-09-29 14:38:52.092921] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-09-29 14:38:57.341564] INFO: 基础特征抽取: 年份 2017, 特征行数=129476
[2022-09-29 14:39:00.270543] INFO: 基础特征抽取: 年份 2018, 特征行数=816865
[2022-09-29 14:39:03.286218] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2022-09-29 14:39:13.813378] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2022-09-29 14:39:31.212283] INFO: 基础特征抽取: 年份 2021, 特征行数=1061527
[2022-09-29 14:39:34.537812] INFO: 基础特征抽取: 年份 2022, 特征行数=861631
[2022-09-29 14:39:34.641334] INFO: 基础特征抽取: 总行数: 4700327
[2022-09-29 14:39:34.650226] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[42.55731s].
[2022-09-29 14:39:34.678449] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-09-29 14:39:55.339210] INFO: derived_feature_extractor: 提取完成 cond1=1, 0.006s
[2022-09-29 14:40:10.782167] INFO: derived_feature_extractor: 提取完成 cond2=rank(fs_operating_revenue_yoy_0 * -1)*0.13+rank(fs_operating_revenue_0 * -1)*0.13+rank(fs_net_profit_yoy_0 * -1)*0.13+rank(pe_ttm_0 * -1)*0.13+rank(market_cap_0/fs_net_cash_flow_ttm_0 * 1)*0.13+rank(ps_ttm_0 * 1)*0.13+rank(pb_lf_0 * 1)*0.13+rank(fs_roe_ttm_0 * -1)*0.13, 15.441s
[2022-09-29 14:40:10.792172] INFO: derived_feature_extractor: 提取完成 cond3=1, 0.007s
[2022-09-29 14:40:10.801676] INFO: derived_feature_extractor: 提取完成 cond4=1, 0.007s
[2022-09-29 14:40:12.240884] INFO: derived_feature_extractor: /y_2017, 129476
[2022-09-29 14:40:13.789741] INFO: derived_feature_extractor: /y_2018, 816865
[2022-09-29 14:40:15.979811] INFO: derived_feature_extractor: /y_2019, 884867
[2022-09-29 14:40:18.327047] INFO: derived_feature_extractor: /y_2020, 945961
[2022-09-29 14:40:21.028789] INFO: derived_feature_extractor: /y_2021, 1061527
[2022-09-29 14:40:23.626474] INFO: derived_feature_extractor: /y_2022, 861631
[2022-09-29 14:40:25.182079] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[50.503617s].
[2022-09-29 14:40:25.187778] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-09-29 14:40:25.195873] INFO: moduleinvoker: 命中缓存
[2022-09-29 14:40:25.197911] INFO: moduleinvoker: input_features.v1 运行完成[0.010143s].
[2022-09-29 14:40:26.038153] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2022-09-29 14:40:26.050651] INFO: moduleinvoker: 命中缓存
[2022-09-29 14:40:26.052987] INFO: moduleinvoker: use_datasource.v1 运行完成[0.014857s].
[2022-09-29 14:40:26.085976] INFO: moduleinvoker: join.v3 开始运行..
[2022-09-29 14:40:44.506312] INFO: join: /y_2017, 行数=0/129476, 耗时=1.888127s
[2022-09-29 14:40:48.031201] INFO: join: /y_2018, 行数=276227/816865, 耗时=3.522092s
[2022-09-29 14:40:52.100692] INFO: join: /y_2019, 行数=884867/884867, 耗时=4.061867s
[2022-09-29 14:40:56.878269] INFO: join: /y_2020, 行数=945960/945961, 耗时=4.76394s
[2022-09-29 14:41:02.072968] INFO: join: /y_2021, 行数=1061527/1061527, 耗时=5.177737s
[2022-09-29 14:41:06.775272] INFO: join: /y_2022, 行数=861631/861631, 耗时=4.687189s
[2022-09-29 14:41:07.060213] INFO: join: 最终行数: 4030212
[2022-09-29 14:41:07.222293] INFO: moduleinvoker: join.v3 运行完成[41.136294s].
[2022-09-29 14:41:07.229163] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-09-29 14:41:07.237728] INFO: moduleinvoker: 命中缓存
[2022-09-29 14:41:07.239528] INFO: moduleinvoker: input_features.v1 运行完成[0.010376s].
[2022-09-29 14:41:07.246140] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2022-09-29 14:41:07.259381] INFO: moduleinvoker: 命中缓存
[2022-09-29 14:41:07.261725] INFO: moduleinvoker: use_datasource.v1 运行完成[0.015587s].
[2022-09-29 14:41:07.292490] INFO: moduleinvoker: join.v3 开始运行..
[2022-09-29 14:41:15.577751] INFO: join: /y_2017, 行数=0/0, 耗时=1.31977s
[2022-09-29 14:41:18.166300] INFO: join: /y_2018, 行数=276227/276227, 耗时=2.586051s
[2022-09-29 14:41:23.451615] INFO: join: /y_2019, 行数=884867/884867, 耗时=5.278839s
[2022-09-29 14:41:29.819672] INFO: join: /y_2020, 行数=945960/945960, 耗时=6.346081s
[2022-09-29 14:41:37.510707] INFO: join: /y_2021, 行数=1061527/1061527, 耗时=7.652781s
[2022-09-29 14:41:43.599348] INFO: join: /y_2022, 行数=861631/861631, 耗时=6.043815s
[2022-09-29 14:41:43.816313] INFO: join: 最终行数: 4030212
[2022-09-29 14:41:43.846893] INFO: moduleinvoker: join.v3 运行完成[36.554392s].
[2022-09-29 14:41:43.864554] INFO: moduleinvoker: cached.v3 开始运行..
[2022-09-29 14:41:43.870530] ERROR: moduleinvoker: module name: cached, module version: v3, trackeback: AttributeError: 'NoneType' object has no attribute 'read_df'
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-1-4dba036f4884> in <module>
512 )
513
--> 514 m22 = M.cached.v3(
515 run=m22_run_bigquant_run,
516 post_run=m22_post_run_bigquant_run,
<ipython-input-1-4dba036f4884> in m22_run_bigquant_run(input_1, input_2, input_3)
19 def m22_run_bigquant_run(input_1, input_2, input_3):
20 # 示例代码如下。在这里编写您的代码
---> 21 df = input_1.read_df()
22 # 缺失值处理
23 # if len(df)!=0:
AttributeError: 'NoneType' object has no attribute 'read_df'