复制链接
克隆策略

使用深度学习技术预测股票价格

版本 v1.0

目录

  • ### 深度学习策略的交易规则

  • ### 策略构建步骤

  • ### 策略的实现

正文

一、深度学习策略的交易规则

  • 买入条件:预测的上涨概率>0.5,则买入或保持已有持仓。
  • 卖出条件 :预测的上涨概率<0.5,则卖出已有股票。

二、策略构建步骤

1、确定股票池和数据起止时间

  • 在证券代码列表m24和m28模块中输入要回测的单只股票,以及数据的起止日期(分别为训练集和验证集)。

2、确定因子

  • 在输入特征列表m8模块中输入用于预测的N个因子表达式。

3、获取基础数据

  • 通过基础特征数据抽取模块m22和m16获取指定股票池的基础数据,如收盘价等字段。

4、确定并计算模型标注

  • 通过自动标注股票模块m21计算需要的标注指标,本例中首先计算未来10天收益,然后根据其正负来给每日数据标注1或0,来标识涨跌。

5、抽取因子数据

  • 通过衍生数据抽取模块m23和m26计算因子数据。

6、合并标注与因子数据

  • 通过连接数据m17模块合并因子数据和标注数据。

7、生成序列窗口滚动数据集

  • 通过序列窗口滚动(深度学习)模块m25和m27将训练集和预测集的数据生成固定窗口长度的数据序列,为后续模型训练和预测做准备。

8、构建LSTM + CNN模型构架

  • 在画布左侧模块列表中依次拖入输入层模块、Reshape层模块、Conv2D层模块、Reshape层模块、LSTM层模块、Dropout层模块和全连接层模块(两组),构成深度学习网络构架,

    最后通过“构建(深度学习)”模块组装各层。这里需要注意:

    输入层的shape参数是 窗口滚动数据集的大小 X 因子数量 , 本例为 50 行 X 5个因子

    ReShape层的参数是 窗口滚动数据集的大小 X 因子数量 X 1 ,本例为 50 行 X 5个因子 X1

    Conv2D层中的 kernel_size参数是滑动窗口的尺寸,本例中使用 3行 X 5列 的窗口, 每次滑动的步长为 1行 X 1列 , 卷积核数目为32,这里的窗口设置决定了后面ReShape层的参数

    ReShape层中的target_shape 参数,这是由 窗口滚动数据集 X 因子数量 和 Conv2D层中设置的窗口尺寸以及步长决定的。本例中 50行 X 5因子 的输入数据,使用 3行 X5列 的窗口滑动取数据,

    每次移动1行,共计可以得到48次数据(即可以通过滑动3行 X 5列的窗口48次来获取完整的数据),因此target_shape= 48 X 卷积核数32

    LSTM层的输出空间维度设置为卷积核数32,并设置激活函数

    Dropout层是防止过度拟合采用的主动裁剪数据技术,这里设置rate 为0.8

    全连接层共两层,第一层的输出空间维度与LSTM的输出维度保持一致为32,第二层将第一层的32维数据转变为1维数据输出,即获取预测的label值,此例为0到1之间的连续值,可以认为是上涨的概率。

9、训练深度学习模型

  • 在画布左侧模块列表中拖入“训练(深度学习)”模块m6,设置属性中的优化器、目标函数、评估指标、每次训练的数据量batch_size、迭代次数epochs和GPU的数量以及日志输出频率。

10、使用深度学习模型预测

  • 在画布左侧模块列表中拖入“预测(深度学习)”模块m7,并将“训练(深度学习)”模块m6的模型输出和验证集的序列窗口滚动数据集传给预测模块,通过预测模块即根据股票验证集的数据预测上涨的概率。

11、将预测结果与时间拼接

  • 通过自定义模块m2将预测的每个滚动序列窗口的最后一个值最为当日的预测结果,并与预测集数据的时间列拼接,形成最终的每日预测结果。

12、根据模型预测结果构建策略

  • 如果当日预测的上涨概率大于0.5,则保持持仓或买入

  • 如果当日预测的上涨概率小于0.5,则卖出股票或保持空仓。

13、模拟回测

  • 通过 trade 模块中的初始化函数定义交易手续费和滑点,通过 context.prediction 获取每日的上涨概率预测结果;

  • 通过 trade 模块中的主函数(handle函数)查看每日的买卖交易信号,按照买卖原则执行相应的买入/卖出操作。

三、策略的实现

可视化策略实现如下:

    {"description":"实验创建于2017/11/15","graph":{"edges":[{"to_node_id":"-281:options_data","from_node_id":"-214:data_1"},{"to_node_id":"-403:inputs","from_node_id":"-210:data"},{"to_node_id":"-293:inputs","from_node_id":"-210:data"},{"to_node_id":"-14834:inputs","from_node_id":"-218:data"},{"to_node_id":"-692:input_data","from_node_id":"-316:data"},{"to_node_id":"-332:trained_model","from_node_id":"-320:data"},{"to_node_id":"-214:input_1","from_node_id":"-332:data"},{"to_node_id":"-692:features","from_node_id":"-2295:data"},{"to_node_id":"-333:features","from_node_id":"-2295:data"},{"to_node_id":"-341:features","from_node_id":"-2295:data"},{"to_node_id":"-300:features","from_node_id":"-2295:data"},{"to_node_id":"-307:features","from_node_id":"-2295:data"},{"to_node_id":"-316:features","from_node_id":"-2295:data"},{"to_node_id":"-293:outputs","from_node_id":"-259:data"},{"to_node_id":"-14841:inputs","from_node_id":"-14806:data"},{"to_node_id":"-14806:inputs","from_node_id":"-14834:data"},{"to_node_id":"-259:inputs","from_node_id":"-14841:data"},{"to_node_id":"-408:inputs","from_node_id":"-403:data"},{"to_node_id":"-446:inputs","from_node_id":"-408:data"},{"to_node_id":"-218:inputs","from_node_id":"-446:data"},{"to_node_id":"-2296:input_data","from_node_id":"-2290:data"},{"to_node_id":"-333:input_data","from_node_id":"-2296:data"},{"to_node_id":"-289:instruments","from_node_id":"-620:data"},{"to_node_id":"-300:instruments","from_node_id":"-620:data"},{"to_node_id":"-330:input_data","from_node_id":"-692:data"},{"to_node_id":"-320:training_data","from_node_id":"-333:data"},{"to_node_id":"-332:input_data","from_node_id":"-341:data"},{"to_node_id":"-214:input_2","from_node_id":"-341:data"},{"to_node_id":"-2290:data1","from_node_id":"-289:data"},{"to_node_id":"-307:input_data","from_node_id":"-300:data"},{"to_node_id":"-2290:data2","from_node_id":"-307:data"},{"to_node_id":"-316:instruments","from_node_id":"-322:data"},{"to_node_id":"-281:instruments","from_node_id":"-322:data"},{"to_node_id":"-341:input_data","from_node_id":"-330:data"},{"to_node_id":"-214:input_3","from_node_id":"-330:data"},{"to_node_id":"-320:input_model","from_node_id":"-293:data"}],"nodes":[{"node_id":"-214","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n\n test_data = input_2.read_pickle()\n pred_label = input_1.read_pickle()\n pred_result = pred_label.reshape(pred_label.shape[0]) \n dt = input_3.read_df()['date'][-1*len(pred_result):]\n pred_df = pd.Series(pred_result, index=dt)\n ds = DataSource.write_df(pred_df)\n \n return Outputs(data_1=ds)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-214"},{"name":"input_2","node_id":"-214"},{"name":"input_3","node_id":"-214"}],"output_ports":[{"name":"data_1","node_id":"-214"},{"name":"data_2","node_id":"-214"},{"name":"data_3","node_id":"-214"}],"cacheable":true,"seq_num":2,"comment":"模型预测结果输出","comment_collapsed":false},{"node_id":"-210","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"50,5","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-210"}],"output_ports":[{"name":"data","node_id":"-210"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-218","module_id":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","parameters":[{"name":"units","value":"32","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"tanh","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_activation","value":"hard_sigmoid","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_initializer","value":"Orthogonal","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"unit_forget_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"dropout","value":"0","type":"Literal","bound_global_parameter":null},{"name":"recurrent_dropout","value":0,"type":"Literal","bound_global_parameter":null},{"name":"return_sequences","value":"False","type":"Literal","bound_global_parameter":null},{"name":"implementation","value":"2","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-218"}],"output_ports":[{"name":"data","node_id":"-218"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-316","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-316"},{"name":"features","node_id":"-316"}],"output_ports":[{"name":"data","node_id":"-316"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-320","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"binary_crossentropy","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"accuracy","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"2048","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"10","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"1","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"1:输出进度条记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-320"},{"name":"training_data","node_id":"-320"},{"name":"validation_data","node_id":"-320"}],"output_ports":[{"name":"data","node_id":"-320"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-332","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"10240","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"0","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-332"},{"name":"input_data","node_id":"-332"}],"output_ports":[{"name":"data","node_id":"-332"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-2295","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"(close_0/close_1-1)*10\n(high_0/high_1-1)*10\n(low_0/low_1-1)*10\n(open_0/open_1-1)*10\n(volume_0/volume_1-1)*10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-2295"}],"output_ports":[{"name":"data","node_id":"-2295"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-259","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"sigmoid","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-259"}],"output_ports":[{"name":"data","node_id":"-259"}],"cacheable":false,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-14806","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"32","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"tanh","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14806"}],"output_ports":[{"name":"data","node_id":"-14806"}],"cacheable":false,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-14834","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.4","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14834"}],"output_ports":[{"name":"data","node_id":"-14834"}],"cacheable":false,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-14841","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.8","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14841"}],"output_ports":[{"name":"data","node_id":"-14841"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-403","module_id":"BigQuantSpace.dl_layer_reshape.dl_layer_reshape-v1","parameters":[{"name":"target_shape","value":"50,5,1","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-403"}],"output_ports":[{"name":"data","node_id":"-403"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-408","module_id":"BigQuantSpace.dl_layer_conv2d.dl_layer_conv2d-v1","parameters":[{"name":"filters","value":"32","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3,5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1,1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"data_format","value":"channels_last","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":"1,1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-408"}],"output_ports":[{"name":"data","node_id":"-408"}],"cacheable":false,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-446","module_id":"BigQuantSpace.dl_layer_reshape.dl_layer_reshape-v1","parameters":[{"name":"target_shape","value":"48,32","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-446"}],"output_ports":[{"name":"data","node_id":"-446"}],"cacheable":false,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-2290","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-2290"},{"name":"data2","node_id":"-2290"}],"output_ports":[{"name":"data","node_id":"-2290"}],"cacheable":true,"seq_num":17,"comment":"标注特征连接","comment_collapsed":false},{"node_id":"-2296","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-2296"}],"output_ports":[{"name":"data","node_id":"-2296"}],"cacheable":true,"seq_num":18,"comment":"去掉为nan的数据","comment_collapsed":true},{"node_id":"-620","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2017-06-02","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2017-10-30","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"600009.SHA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-620"}],"output_ports":[{"name":"data","node_id":"-620"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-692","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-692"},{"name":"features","node_id":"-692"}],"output_ports":[{"name":"data","node_id":"-692"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n try:\n prediction = context.prediction[data.current_dt.strftime('%Y-%m-%d')]\n except KeyError as e:\n return\n \n instrument = context.instruments[0]\n sid = context.symbol(instrument)\n cur_position = context.portfolio.positions[sid].amount\n \n # 交易逻辑\n if prediction > 0.5 and cur_position == 0:\n context.order_target_percent(context.symbol(instrument), 1)\n print(data.current_dt, '买入!')\n \n elif prediction < 0.5 and cur_position > 0:\n context.order_target_percent(context.symbol(instrument), 0)\n print(data.current_dt, '卖出!')\n ","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-281"},{"name":"options_data","node_id":"-281"},{"name":"history_ds","node_id":"-281"},{"name":"benchmark_ds","node_id":"-281"},{"name":"trading_calendar","node_id":"-281"}],"output_ports":[{"name":"raw_perf","node_id":"-281"}],"cacheable":false,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-333","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"50","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-333"},{"name":"features","node_id":"-333"}],"output_ports":[{"name":"data","node_id":"-333"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-341","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"50","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-341"},{"name":"features","node_id":"-341"}],"output_ports":[{"name":"data","node_id":"-341"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-289","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nwhere(shift(close, -10) / close -1>0,1,0)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-289"}],"output_ports":[{"name":"data","node_id":"-289"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-300","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-300"},{"name":"features","node_id":"-300"}],"output_ports":[{"name":"data","node_id":"-300"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-307","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-307"},{"name":"features","node_id":"-307"}],"output_ports":[{"name":"data","node_id":"-307"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-322","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-02-11","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2019-08-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"600009.SHA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-322"}],"output_ports":[{"name":"data","node_id":"-322"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-330","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-330"}],"output_ports":[{"name":"data","node_id":"-330"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-293"},{"name":"outputs","node_id":"-293"}],"output_ports":[{"name":"data","node_id":"-293"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-214' Position='1012,714,200,200'/><node_position Node='-210' Position='346,-367,200,200'/><node_position Node='-218' Position='277,69,200,200'/><node_position Node='-316' Position='1229,-86,200,200'/><node_position Node='-320' Position='633,537,200,200'/><node_position Node='-332' Position='816,622,200,200'/><node_position Node='-2295' Position='1006,-264,200,200'/><node_position Node='-259' Position='281,387,200,200'/><node_position Node='-14806' Position='279,211,200,200'/><node_position Node='-14834' Position='279,146,200,200'/><node_position Node='-14841' Position='282,301,200,200'/><node_position Node='-403' Position='279,-194,200,200'/><node_position Node='-408' Position='280,-107,200,200'/><node_position Node='-446' Position='278,-23,200,200'/><node_position Node='-2290' Position='735,138,200,200'/><node_position Node='-2296' Position='734,242,200,200'/><node_position Node='-620' Position='718,-171,200,200'/><node_position Node='-692' Position='1251,-7,200,200'/><node_position Node='-281' Position='1238,840.6558837890625,200,200'/><node_position Node='-333' Position='753,329,200,200'/><node_position Node='-341' Position='1045,322,200,200'/><node_position Node='-289' Position='596,-12,200,200'/><node_position Node='-300' Position='860,-82,200,200'/><node_position Node='-307' Position='871,10,200,200'/><node_position Node='-322' Position='1239,-198,200,200'/><node_position Node='-330' Position='1250,84,200,200'/><node_position Node='-293' Position='465,466,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [9]:
    # 本代码由可视化策略环境自动生成 2021年12月6日 22:12
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 用户的自定义层需要写到字典中,比如
    # {
    #   "MyLayer": MyLayer
    # }
    m6_custom_objects_bigquant_run = {
        
    }
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m2_run_bigquant_run(input_1, input_2, input_3):
    
        test_data = input_2.read_pickle()
        pred_label = input_1.read_pickle()
        pred_result = pred_label.reshape(pred_label.shape[0]) 
        dt = input_3.read_df()['date'][-1*len(pred_result):]
        pred_df = pd.Series(pred_result, index=dt)
        ds = DataSource.write_df(pred_df)
        
        return Outputs(data_1=ds)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m2_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m1_initialize_bigquant_run(context):
        # 加载预测数据
        context.prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
    # 回测引擎:每日数据处理函数,每天执行一次
    def m1_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        try:
            prediction = context.prediction[data.current_dt.strftime('%Y-%m-%d')]
        except KeyError as e:
            return
        
        instrument = context.instruments[0]
        sid = context.symbol(instrument)
        cur_position = context.portfolio.positions[sid].amount
        
        # 交易逻辑
        if prediction > 0.5 and cur_position == 0:
            context.order_target_percent(context.symbol(instrument), 1)
            print(data.current_dt, '买入!')
            
        elif prediction < 0.5 and cur_position > 0:
            context.order_target_percent(context.symbol(instrument), 0)
            print(data.current_dt, '卖出!')
        
    # 回测引擎:准备数据,只执行一次
    def m1_prepare_bigquant_run(context):
        pass
    
    # 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。
    def m1_before_trading_start_bigquant_run(context, data):
        pass
    
    
    m3 = M.dl_layer_input.v1(
        shape='50,5',
        batch_shape='',
        dtype='float32',
        sparse=False,
        name=''
    )
    
    m13 = M.dl_layer_reshape.v1(
        inputs=m3.data,
        target_shape='50,5,1',
        name=''
    )
    
    m14 = M.dl_layer_conv2d.v1(
        inputs=m13.data,
        filters=32,
        kernel_size='3,5',
        strides='1,1',
        padding='valid',
        data_format='channels_last',
        dilation_rate='1,1',
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m15 = M.dl_layer_reshape.v1(
        inputs=m14.data,
        target_shape='48,32',
        name=''
    )
    
    m4 = M.dl_layer_lstm.v1(
        inputs=m15.data,
        units=32,
        activation='tanh',
        recurrent_activation='hard_sigmoid',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        recurrent_initializer='Orthogonal',
        bias_initializer='Ones',
        unit_forget_bias=True,
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        recurrent_regularizer='None',
        recurrent_regularizer_l1=0,
        recurrent_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        recurrent_constraint='None',
        bias_constraint='None',
        dropout=0,
        recurrent_dropout=0,
        return_sequences=False,
        implementation='2',
        name=''
    )
    
    m11 = M.dl_layer_dropout.v1(
        inputs=m4.data,
        rate=0.4,
        noise_shape='',
        name=''
    )
    
    m10 = M.dl_layer_dense.v1(
        inputs=m11.data,
        units=32,
        activation='tanh',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m12 = M.dl_layer_dropout.v1(
        inputs=m10.data,
        rate=0.8,
        noise_shape='',
        name=''
    )
    
    m9 = M.dl_layer_dense.v1(
        inputs=m12.data,
        units=1,
        activation='sigmoid',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m5 = M.dl_model_init.v1(
        inputs=m3.data,
        outputs=m9.data
    )
    
    m8 = M.input_features.v1(
        features="""(close_0/close_1-1)*10
    (high_0/high_1-1)*10
    (low_0/low_1-1)*10
    (open_0/open_1-1)*10
    (volume_0/volume_1-1)*10"""
    )
    
    m24 = M.instruments.v2(
        start_date='2017-06-02',
        end_date='2017-10-30',
        market='CN_STOCK_A',
        instrument_list='600009.SHA',
        max_count=0
    )
    
    m21 = M.advanced_auto_labeler.v2(
        instruments=m24.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    where(shift(close, -10) / close -1>0,1,0)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=True,
        user_functions={}
    )
    
    m22 = M.general_feature_extractor.v7(
        instruments=m24.data,
        features=m8.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m23 = M.derived_feature_extractor.v3(
        input_data=m22.data,
        features=m8.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m17 = M.join.v3(
        data1=m21.data,
        data2=m23.data,
        on='date',
        how='inner',
        sort=True
    )
    
    m18 = M.dropnan.v1(
        input_data=m17.data
    )
    
    m25 = M.dl_convert_to_bin.v2(
        input_data=m18.data,
        features=m8.data,
        window_size=50,
        feature_clip=5,
        flatten=False,
        window_along_col=''
    )
    
    m6 = M.dl_model_train.v1(
        input_model=m5.data,
        training_data=m25.data,
        optimizer='Adam',
        loss='binary_crossentropy',
        metrics='accuracy',
        batch_size=2048,
        epochs=10,
        custom_objects=m6_custom_objects_bigquant_run,
        n_gpus=1,
        verbose='1:输出进度条记录'
    )
    
    m28 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2019-02-11'),
        end_date=T.live_run_param('trading_date', '2019-08-01'),
        market='CN_STOCK_A',
        instrument_list='600009.SHA',
        max_count=0
    )
    
    m16 = M.general_feature_extractor.v7(
        instruments=m28.data,
        features=m8.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m26 = M.derived_feature_extractor.v3(
        input_data=m16.data,
        features=m8.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m20 = M.dropnan.v1(
        input_data=m26.data
    )
    
    m27 = M.dl_convert_to_bin.v2(
        input_data=m20.data,
        features=m8.data,
        window_size=50,
        feature_clip=5,
        flatten=False,
        window_along_col=''
    )
    
    m7 = M.dl_model_predict.v1(
        trained_model=m6.data,
        input_data=m27.data,
        batch_size=10240,
        n_gpus=0,
        verbose='2:每个epoch输出一行记录'
    )
    
    m2 = M.cached.v3(
        input_1=m7.data,
        input_2=m27.data,
        input_3=m20.data,
        run=m2_run_bigquant_run,
        post_run=m2_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m1 = M.trade.v4(
        instruments=m28.data,
        options_data=m2.data_1,
        start_date='',
        end_date='',
        initialize=m1_initialize_bigquant_run,
        handle_data=m1_handle_data_bigquant_run,
        prepare=m1_prepare_bigquant_run,
        before_trading_start=m1_before_trading_start_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.HIX'
    )
    
    Train on 102 samples
    Epoch 1/10
    102/102 [==============================] - 5s 48ms/sample - loss: 1.1517 - accuracy: 0.4020
    Epoch 2/10
    102/102 [==============================] - 0s 4ms/sample - loss: 0.9214 - accuracy: 0.4412
    Epoch 3/10
    102/102 [==============================] - 0s 3ms/sample - loss: 0.9762 - accuracy: 0.5196
    Epoch 4/10
    102/102 [==============================] - 0s 3ms/sample - loss: 0.9106 - accuracy: 0.5392
    Epoch 5/10
    102/102 [==============================] - 0s 3ms/sample - loss: 1.1175 - accuracy: 0.4216
    Epoch 6/10
    102/102 [==============================] - 0s 3ms/sample - loss: 0.8045 - accuracy: 0.5588
    Epoch 7/10
    102/102 [==============================] - 0s 3ms/sample - loss: 0.9153 - accuracy: 0.4902
    Epoch 8/10
    102/102 [==============================] - 0s 2ms/sample - loss: 0.9243 - accuracy: 0.4412
    Epoch 9/10
    102/102 [==============================] - 0s 3ms/sample - loss: 0.8818 - accuracy: 0.4706
    Epoch 10/10
    102/102 [==============================] - 0s 3ms/sample - loss: 0.8439 - accuracy: 0.5588
    
    176/176 - 0s
    DataSource(1fca7cfe8a5d4a7d97e7f8fe4b9bac4eT, v3)
    
    2019-02-11 15:00:00+00:00 买入!
    
    • 收益率63.37%
    • 年化收益率182.77%
    • 基准收益率17.12%
    • 阿尔法0.78
    • 贝塔0.89
    • 夏普比率2.88
    • 胜率1.0
    • 盈亏比0.0
    • 收益波动率37.57%
    • 信息比率0.15
    • 最大回撤7.97%
    bigcharts-data-start/{"__id":"bigchart-9ab00c6dc88b4a989be91e174d37d0ee","__type":"tabs"}/bigcharts-data-end