{"description":"实验创建于2022/11/2","graph":{"edges":[{"to_node_id":"-13:instruments","from_node_id":"-4:data"},{"to_node_id":"-36:input_1","from_node_id":"-13:data"},{"to_node_id":"-13:features","from_node_id":"-28:data"}],"nodes":[{"node_id":"-4","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-02-05","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-02-15","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"603200.SHA\n300811.SZA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-4"}],"output_ports":[{"name":"data","node_id":"-4"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-13","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-13"},{"name":"features","node_id":"-13"}],"output_ports":[{"name":"data","node_id":"-13"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-28","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\namount_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-28"}],"output_ports":[{"name":"data","node_id":"-28"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-36","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\n\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = pd.DataFrame({'data': [1, 2, 3]})\n def cal(df):\n df['成交累加']=df['amount'].cumsum()/10000\n return df\n df.groupby('instrument').apply(cal)\n\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n\n \n# data_1 = DataSource.write_df(df)\n# data_2 = DataSource.write_pickle(df)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\n# def bigquant_run(outputs):\n# return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-36"},{"name":"input_2","node_id":"-36"},{"name":"input_3","node_id":"-36"}],"output_ports":[{"name":"data_1","node_id":"-36"},{"name":"data_2","node_id":"-36"},{"name":"data_3","node_id":"-36"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-4' Position='169,92.11111450195312,200,200'/><node_position Node='-13' Position='282,245.11111450195312,200,200'/><node_position Node='-28' Position='511,85.11111450195312,200,200'/><node_position Node='-36' Position='279,394.77777099609375,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-11-02 17:19:54.445671] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-11-02 17:19:54.454687] INFO: moduleinvoker: 命中缓存
[2022-11-02 17:19:54.457665] INFO: moduleinvoker: instruments.v2 运行完成[0.011995s].
[2022-11-02 17:19:54.463879] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-11-02 17:19:54.473990] INFO: moduleinvoker: 命中缓存
[2022-11-02 17:19:54.476823] INFO: moduleinvoker: input_features.v1 运行完成[0.01291s].
[2022-11-02 17:19:54.500575] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-11-02 17:19:54.508361] INFO: moduleinvoker: 命中缓存
[2022-11-02 17:19:54.510727] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.010174s].
[2022-11-02 17:19:54.525841] INFO: moduleinvoker: cached.v3 开始运行..
[2022-11-02 17:19:54.539572] ERROR: moduleinvoker: module name: cached, module version: v3, trackeback: KeyError: 'instrument'
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-18-8588829404be> in <module>
48 )
49
---> 50 m5 = M.cached.v3(
51 input_1=m2.data,
52 run=m5_run_bigquant_run,
<ipython-input-18-8588829404be> in m5_run_bigquant_run(input_1, input_2, input_3)
11 df['成交累加']=df['amount'].cumsum()/10000
12 return df
---> 13 df.groupby('instrument').apply(cal)
14
15 return Outputs(data_1=data_1, data_2=None, data_3=None)
KeyError: 'instrument'