{"description":"实验创建于2021/12/10","graph":{"edges":[{"to_node_id":"-91:features","from_node_id":"-77:data"},{"to_node_id":"-106:features","from_node_id":"-77:data"},{"to_node_id":"-106:input_data","from_node_id":"-91:data"},{"to_node_id":"-91:instruments","from_node_id":"-97:data"},{"to_node_id":"-78:input_data","from_node_id":"-106:data"},{"to_node_id":"-84:input_data","from_node_id":"-93:data"},{"to_node_id":"-93:input_data","from_node_id":"-99:data"},{"to_node_id":"-84:features","from_node_id":"-105:data"},{"to_node_id":"-99:features","from_node_id":"-105:data"},{"to_node_id":"-99:instruments","from_node_id":"-109:data"}],"nodes":[{"node_id":"-77","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nadjust_factor_0\ntimex = timex(close_0,open_0)\nMA5 = mean(close_0, 5)\nsma=sma(close_0/adjust_factor_0,20,1)\nclose_0/adjust_factor_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-77"}],"output_ports":[{"name":"data","node_id":"-77"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-91","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-91"},{"name":"features","node_id":"-91"}],"output_ports":[{"name":"data","node_id":"-91"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-97","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-05-06","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-97"}],"output_ports":[{"name":"data","node_id":"-97"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-106","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"def timex(df,s,x):\n return s * x\ndef sma(df,S,N,M=1):#1)高效的方法\n #return pd.Series(S).ewm(alpha=M/N,adjust=True).mean().values\n return pd.Series(S).ewm(com=N-M,adjust=True).mean().values\nbigquant_run = {\n 'timex' : timex,\n 'sma' : sma\n}\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-78","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"instrument=='000001.SZA'","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-78"}],"output_ports":[{"name":"data","node_id":"-78"},{"name":"left_data","node_id":"-78"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-84","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"def timex(df,s,x):\n return s * x\ndef sma(df,S,N,M=1):#1)高效的方法\n #return pd.Series(S).ewm(alpha=M/N,adjust=True).mean().values\n return pd.Series(S).ewm(com=N-M,adjust=True).mean().values\nbigquant_run = {\n 'timex' : timex,\n 'sma' : sma\n}\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-84"},{"name":"features","node_id":"-84"}],"output_ports":[{"name":"data","node_id":"-84"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-93","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"instrument=='000001.SZA'","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-93"}],"output_ports":[{"name":"data","node_id":"-93"},{"name":"left_data","node_id":"-93"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-99","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-99"},{"name":"features","node_id":"-99"}],"output_ports":[{"name":"data","node_id":"-99"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-105","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nadjust_factor_0\ntimex = timex(close_0,open_0)\nMA5 = mean(close_0, 5)\nsma=sma(close_0/adjust_factor_0,20,1)\nclose_0/adjust_factor_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-105"}],"output_ports":[{"name":"data","node_id":"-105"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-109","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-05-06","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-109"}],"output_ports":[{"name":"data","node_id":"-109"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-77' Position='503,67,200,200'/><node_position Node='-91' Position='389,173,200,200'/><node_position Node='-97' Position='202,67,200,200'/><node_position Node='-106' Position='434.83447265625,267.01971435546875,200,200'/><node_position Node='-78' Position='428.7870788574219,339.67018127441406,200,200'/><node_position Node='-84' Position='852.48486328125,727.2995986938477,200,200'/><node_position Node='-93' Position='823.6990051269531,647.2772750854492,200,200'/><node_position Node='-99' Position='805.567626953125,572.6438980102539,200,200'/><node_position Node='-105' Position='919.567626953125,466.6438980102539,200,200'/><node_position Node='-109' Position='618.567626953125,466.6438980102539,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-05-07 10:07:21.217241] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-05-07 10:07:21.225752] INFO: moduleinvoker: 命中缓存
[2022-05-07 10:07:21.227900] INFO: moduleinvoker: input_features.v1 运行完成[0.010679s].
[2022-05-07 10:07:21.236421] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-05-07 10:07:21.244262] INFO: moduleinvoker: 命中缓存
[2022-05-07 10:07:21.246039] INFO: moduleinvoker: instruments.v2 运行完成[0.009633s].
[2022-05-07 10:07:21.264424] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-05-07 10:07:21.273295] INFO: moduleinvoker: 命中缓存
[2022-05-07 10:07:21.275713] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.011294s].
[2022-05-07 10:07:21.286097] INFO: moduleinvoker: filter.v3 开始运行..
[2022-05-07 10:07:21.293741] INFO: moduleinvoker: 命中缓存
[2022-05-07 10:07:21.295622] INFO: moduleinvoker: filter.v3 运行完成[0.009531s].
[2022-05-07 10:07:21.304619] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-05-07 10:07:21.420007] INFO: derived_feature_extractor: 提取完成 timex = timex(close_0,open_0), 0.001s
[2022-05-07 10:07:21.426379] INFO: derived_feature_extractor: 提取完成 MA5 = mean(close_0, 5), 0.005s
[2022-05-07 10:07:21.429205] INFO: derived_feature_extractor: 提取完成 sma=sma(close_0/adjust_factor_0,20,1), 0.001s
[2022-05-07 10:07:21.431355] INFO: derived_feature_extractor: 提取完成 close_0/adjust_factor_0, 0.001s
[2022-05-07 10:07:21.473727] INFO: derived_feature_extractor: /y_2020, 60
[2022-05-07 10:07:21.526743] INFO: derived_feature_extractor: /y_2021, 243
[2022-05-07 10:07:21.571963] INFO: derived_feature_extractor: /y_2022, 79
[2022-05-07 10:07:21.631302] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.326682s].