{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-274:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-274:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-281:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-295:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-6060:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-288:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-6060:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-281:input_data","from_node_id":"-274:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-281:data"},{"to_node_id":"-295:input_data","from_node_id":"-288:data"},{"to_node_id":"-86:input_data","from_node_id":"-295:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"-2583:data_1"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2014-12-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"3","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"100","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"5","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":"0.3","type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2015-07-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-274","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-274"},{"name":"features","node_id":"-274"}],"output_ports":[{"name":"data","node_id":"-274"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-281"},{"name":"features","node_id":"-281"}],"output_ports":[{"name":"data","node_id":"-281"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"60","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-295","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-295"},{"name":"features","node_id":"-295"}],"output_ports":[{"name":"data","node_id":"-295"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-6060","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-6060"},{"name":"options_data","node_id":"-6060"},{"name":"history_ds","node_id":"-6060"},{"name":"benchmark_ds","node_id":"-6060"},{"name":"trading_calendar","node_id":"-6060"}],"output_ports":[{"name":"raw_perf","node_id":"-6060"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-2583","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n data = pd.read_pickle('/home/bigquant/work/userlib/model_stockranker.csv')\n model_ds = DataSource.write_pickle(data.iloc[0].values[0])\n return Outputs(data_1=model_ds)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2583"},{"name":"input_2","node_id":"-2583"},{"name":"input_3","node_id":"-2583"}],"output_ports":[{"name":"data_1","node_id":"-2583"},{"name":"data_2","node_id":"-2583"},{"name":"data_3","node_id":"-2583"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='485.204833984375,511.8421936035156,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='819.0850219726562,689.3975830078125,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='282.7222900390625,437.0819396972656,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-274' Position='381,188,200,200'/><node_position Node='-281' Position='385,280,200,200'/><node_position Node='-288' Position='1078,236,200,200'/><node_position Node='-295' Position='1081,327,200,200'/><node_position Node='-6060' Position='1000.9620361328125,765.8391723632812,200,200'/><node_position Node='-2583' Position='514.6023559570312,608.4446411132812,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2023-02-22 14:38:09.544562] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-02-22 14:38:09.659600] INFO: moduleinvoker: instruments.v2 运行完成[0.115049s].
[2023-02-22 14:38:09.671605] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2023-02-22 14:38:10.072549] INFO: 自动标注(股票): 加载历史数据: 53383 行
[2023-02-22 14:38:10.075044] INFO: 自动标注(股票): 开始标注 ..
[2023-02-22 14:38:12.640527] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[2.968919s].
[2023-02-22 14:38:12.648962] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-02-22 14:38:12.658032] INFO: moduleinvoker: 命中缓存
[2023-02-22 14:38:12.660889] INFO: moduleinvoker: input_features.v1 运行完成[0.011926s].
[2023-02-22 14:38:12.681872] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-02-22 14:38:13.314525] INFO: 基础特征抽取: 年份 2014, 特征行数=53383
[2023-02-22 14:38:13.701427] INFO: 基础特征抽取: 年份 2015, 特征行数=0
[2023-02-22 14:38:13.749274] INFO: 基础特征抽取: 总行数: 53383
[2023-02-22 14:38:13.755422] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[1.073565s].
[2023-02-22 14:38:13.766992] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-02-22 14:38:13.986021] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.003s
[2023-02-22 14:38:13.990812] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.002s
[2023-02-22 14:38:13.995410] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.002s
[2023-02-22 14:38:13.999665] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.002s
[2023-02-22 14:38:14.004904] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.003s
[2023-02-22 14:38:14.044754] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.037s
[2023-02-22 14:38:14.224267] INFO: derived_feature_extractor: /y_2014, 53383
[2023-02-22 14:38:14.325664] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.558655s].
[2023-02-22 14:38:14.336973] INFO: moduleinvoker: join.v3 开始运行..
[2023-02-22 14:38:14.739974] INFO: join: /y_2014, 行数=41014/53383, 耗时=0.229523s
[2023-02-22 14:38:14.779067] INFO: join: 最终行数: 41014
[2023-02-22 14:38:14.788985] INFO: moduleinvoker: join.v3 运行完成[0.452s].
[2023-02-22 14:38:14.799951] INFO: moduleinvoker: dropnan.v1 开始运行..
[2023-02-22 14:38:14.995228] INFO: dropnan: /y_2014, 40884/41014
[2023-02-22 14:38:15.037818] INFO: dropnan: 行数: 40884/41014
[2023-02-22 14:38:15.044574] INFO: moduleinvoker: dropnan.v1 运行完成[0.244631s].
[2023-02-22 14:38:15.066441] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2023-02-22 14:38:15.302979] INFO: StockRanker: 特征预处理 ..
[2023-02-22 14:38:15.405825] INFO: StockRanker: prepare data: training ..
[2023-02-22 14:38:15.560990] INFO: StockRanker: sort ..
[2023-02-22 14:38:16.245515] INFO: StockRanker训练: 7c14a61a 准备训练: 40884 行数
[2023-02-22 14:38:16.525638] INFO: StockRanker训练: 正在训练 ..
[2023-02-22 14:39:37.071502] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[82.005069s].
[2023-02-22 14:39:37.082354] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-02-22 14:39:37.166422] INFO: moduleinvoker: instruments.v2 运行完成[0.083987s].
[2023-02-22 14:39:37.184569] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-02-22 14:39:37.846360] INFO: 基础特征抽取: 年份 2014, 特征行数=99861
[2023-02-22 14:39:39.101171] INFO: 基础特征抽取: 年份 2015, 特征行数=281127
[2023-02-22 14:39:39.177665] INFO: 基础特征抽取: 总行数: 380988
[2023-02-22 14:39:39.189825] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[2.005279s].
[2023-02-22 14:39:39.197910] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-02-22 14:39:40.199426] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.003s
[2023-02-22 14:39:40.204475] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.003s
[2023-02-22 14:39:40.208738] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.002s
[2023-02-22 14:39:40.212910] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.002s
[2023-02-22 14:39:40.245324] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.003s
[2023-02-22 14:39:40.249489] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.002s
[2023-02-22 14:39:40.609497] INFO: derived_feature_extractor: /y_2014, 99861
[2023-02-22 14:39:41.311894] INFO: derived_feature_extractor: /y_2015, 281127
[2023-02-22 14:39:41.717051] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[2.519112s].
[2023-02-22 14:39:41.729497] INFO: moduleinvoker: dropnan.v1 开始运行..
[2023-02-22 14:39:42.136153] INFO: dropnan: /y_2014, 99326/99861
[2023-02-22 14:39:43.001156] INFO: dropnan: /y_2015, 277492/281127
[2023-02-22 14:39:43.107190] INFO: dropnan: 行数: 376818/380988
[2023-02-22 14:39:43.120328] INFO: moduleinvoker: dropnan.v1 运行完成[1.390826s].
[2023-02-22 14:39:43.142997] INFO: moduleinvoker: cached.v3 开始运行..
[2023-02-22 14:39:43.153957] INFO: moduleinvoker: 命中缓存
[2023-02-22 14:39:43.156726] INFO: moduleinvoker: cached.v3 运行完成[0.013733s].
[2023-02-22 14:39:43.174491] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2023-02-22 14:39:43.722301] INFO: StockRanker预测: /y_2014 ..
[2023-02-22 14:39:44.498238] INFO: StockRanker预测: /y_2015 ..
[2023-02-22 14:39:45.704112] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[2.529604s].
[2023-02-22 14:39:50.218791] INFO: moduleinvoker: backtest.v8 开始运行..
[2023-02-22 14:39:50.226519] INFO: backtest: biglearning backtest:V8.6.3
[2023-02-22 14:39:50.228034] INFO: backtest: product_type:stock by specified
[2023-02-22 14:39:50.324122] INFO: moduleinvoker: cached.v2 开始运行..
[2023-02-22 14:39:55.309126] INFO: backtest: 读取股票行情完成:1119996
[2023-02-22 14:39:56.326005] INFO: moduleinvoker: cached.v2 运行完成[6.001917s].
[2023-02-22 14:40:03.081026] INFO: backtest: algo history_data=DataSource(8b4b889a4d3146589adb444991e17674T)
[2023-02-22 14:40:03.083463] INFO: algo: TradingAlgorithm V1.8.9
[2023-02-22 14:40:04.265151] INFO: algo: trading transform...
[2023-02-22 14:40:08.649235] INFO: Performance: Simulated 120 trading days out of 120.
[2023-02-22 14:40:08.651897] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2023-02-22 14:40:08.654252] INFO: Performance: last close: 2015-07-01 15:00:00+00:00
[2023-02-22 14:40:11.291288] INFO: moduleinvoker: backtest.v8 运行完成[21.072489s].
[2023-02-22 14:40:11.293842] INFO: moduleinvoker: trade.v4 运行完成[25.579783s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-4d85b802b8a54344b649d75a760cdbbd"}/bigcharts-data-end
- 收益率170.68%
- 年化收益率709.4%
- 基准收益率20.36%
- 阿尔法5.23
- 贝塔0.74
- 夏普比率5.29
- 胜率0.71
- 盈亏比1.53
- 收益波动率40.71%
- 信息比率0.34
- 最大回撤23.58%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-e39cc56e07d04c12a492b694ddc66118"}/bigcharts-data-end