复制链接
克隆策略

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-493:features_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-2497:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-194:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"-487:data2","from_node_id":"-86:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"-183:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-210:data1","from_node_id":"-238:data"},{"to_node_id":"-86:input_data","from_node_id":"-348:data"},{"to_node_id":"-340:input_1","from_node_id":"-329:data_1"},{"to_node_id":"-479:input_ds","from_node_id":"-471:data_1"},{"to_node_id":"-250:options_data","from_node_id":"-479:sorted_data"},{"to_node_id":"-471:input_1","from_node_id":"-487:data"},{"to_node_id":"-231:features","from_node_id":"-493:data"},{"to_node_id":"-238:features","from_node_id":"-493:data"},{"to_node_id":"-2493:input_1","from_node_id":"-2497:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"-2500:data"},{"to_node_id":"-183:data1","from_node_id":"-456:data"},{"to_node_id":"-456:input_data","from_node_id":"-449:data"},{"to_node_id":"-456:features","from_node_id":"-444:data"},{"to_node_id":"-449:features","from_node_id":"-444:data"},{"to_node_id":"-449:instruments","from_node_id":"-174:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"-174:data"},{"to_node_id":"-215:instruments","from_node_id":"-174:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-183:data"},{"to_node_id":"-194:features","from_node_id":"-189:data"},{"to_node_id":"-201:features","from_node_id":"-189:data"},{"to_node_id":"-201:input_data","from_node_id":"-194:data"},{"to_node_id":"-210:data2","from_node_id":"-201:data"},{"to_node_id":"-329:input_1","from_node_id":"-210:data"},{"to_node_id":"-2500:input_data","from_node_id":"-216:data_1"},{"to_node_id":"-348:input_data","from_node_id":"-220:data_1"},{"to_node_id":"-220:input_1","from_node_id":"-340:data_1"},{"to_node_id":"-216:input_1","from_node_id":"-2493:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"-487:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n#(shift(close, -5)-shift(open, -1))/shift(open, -1)\n# product((1+shift(close, -1)/shift(open, -1)),5)\n# (1+shift(close, -1)/shift(open, -1))*(1+shift(close, -2)/shift(open, -2))*(1+shift(close, -3)/shift(open, -3))*(1+shift(close, -4)/shift(open, -4))*(1+shift(close, -5)/shift(open, -5))\n# where(shift(close, -2)/shift(open,-1)>1.025, 1, -1)\n# where(shift(close, -3)/shift(open,-1)>1.043, 2, 0)\n# where(shift(close, -4)/shift(open,-1)>1.1, 3, 0)\n# rank(all_quantile(shift(close, -3)/shift(open,-1), 0.85))\nrank(shift(close, -3)/shift(open,-1))\nshift(close, -5) / shift(open, -1) - shift(benchmark_close, -5) / shift(benchmark_open, -1)\n\n\n# 极值处理:用2%和98%分位的值做clip\nclip(label, all_quantile(label, 0.02), all_quantile(label, 0.98))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 30)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n\n\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"return_0/return_4\npe_ttm_0\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2017-01-02","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2018-02-15","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"def talib_KDJ(df,high, low, close, fastk_period=9, slowk_period=3, slowd_period=3):\n #计算kd指标\n k, d = talib.STOCH(high, low, close, \n fastk_period=fastk_period, \n slowk_period=slowk_period, \n slowd_period=slowd_period)\n j = 3 * k - 2 *d\n return j \n\n# 因为这俩表达式是我们新自定义的表达式,因此需要声明,以便在输入特征列表可使用\nbigquant_run = {\n 'talib_KDJ_j':talib_KDJ\n}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"def talib_KDJ(df,high, low, close, fastk_period=9, slowk_period=3, slowd_period=3):\n #计算kd指标\n k, d = talib.STOCH(high, low, close, \n fastk_period=fastk_period, \n slowk_period=slowk_period, \n slowd_period=slowd_period)\n j = 3 * k - 2 *d\n return j \n\n# 因为这俩表达式是我们新自定义的表达式,因此需要声明,以便在输入特征列表可使用\nbigquant_run = {\n 'talib_KDJ_j':talib_KDJ\n}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.34\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n today = data.current_dt.strftime('%Y-%m-%d')\n \n #------------------------------------------止损模块START--------------------------------------------\n equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n positions_stop={e.symbol:p.cost_basis for e,p in context.portfolio.positions.items()}\n \n # 新建当日止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n stoploss_stock = [] \n stopwin_stock=[]\n if len(equities) > 0:\n for i in equities.keys():\n stock_cost=positions_stop[i]\n stock_market_price = data.current(context.symbol(i), 'price') # 最新市场价格\n last_sale_date = equities[i].last_sale_date # 上次交易日期\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days # 持仓天数\n # 建仓以来的最高价\n highest_price_since_buy = data.history(context.symbol(i), 'high', hold_days, '1d').max()\n # 确定止损位置\n stoploss_line = stock_cost * 0.9\n #record('止损位置', stoploss_line)\n # 如果价格下穿止损位置\n if stock_market_price < stoploss_line:\n context.order_target_percent(context.symbol(i), 0) \n stoploss_stock.append(i)\n if stock_market_price/stock_cost > 1.06 and data.can_trade(context.symbol(i)) and not context.has_unfinished_sell_order(i):\n context.order_target_percent(context.symbol(i),0) \n stopwin_stock.append(i)\n if len(stoploss_stock)>0:\n print('日期:', today, '股票:', stoploss_stock, '出现跟踪止损状况')\n if len(stopwin_stock)>0:\n print(today,'止盈股票列表',stopwin_stock)\n #-------------------------------------------止损模块END--------------------------------------------- \n \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n sell_stock = []\n# # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n# if not is_staging and cash_for_sell > 0:\n# equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n# instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n# lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n# for instrument in instruments:\n# # 如果已经移动止损卖出过则不再轮仓卖出,以防止出现空头持仓\n# if instrument in stoploss_stock:\n# continue\n# context.order_target(context.symbol(instrument), 0)\n# cash_for_sell -= positions[instrument]\n# # 记录轮仓卖出的股票\n# sell_stock.append(instrument)\n# if cash_for_sell <= 0:\n# break\n# print(today,'末位淘汰',sell_stock)\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_list = list(ranker_prediction.instrument)\n # 不再买入已经轮仓卖出和移动止损的股票,以防止出现空头持仓\n buy_instruments = [i for i in buy_list if i not in sell_stock + stoploss_stock][:len(buy_cash_weights)]\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"50000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-348","module_id":"BigQuantSpace.aa.aa-v5","parameters":[{"name":"day_number","value":100,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-348"}],"output_ports":[{"name":"data","node_id":"-348"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-329","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v7","parameters":[],"input_ports":[{"name":"input_1","node_id":"-329"}],"output_ports":[{"name":"data_1","node_id":"-329"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-471","module_id":"BigQuantSpace.score_group_filter.score_group_filter-v3","parameters":[{"name":"分组","value":"10","type":"Literal","bound_global_parameter":null},{"name":"区间1","value":"10","type":"Literal","bound_global_parameter":null},{"name":"区间2","value":"9","type":"Literal","bound_global_parameter":null},{"name":"区间3","value":"8","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-471"}],"output_ports":[{"name":"data_1","node_id":"-471"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-479","module_id":"BigQuantSpace.sort.sort-v5","parameters":[{"name":"sort_by","value":"score","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-479"},{"name":"sort_by_ds","node_id":"-479"}],"output_ports":[{"name":"sorted_data","node_id":"-479"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-487","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-487"},{"name":"data2","node_id":"-487"}],"output_ports":[{"name":"data","node_id":"-487"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-493","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# 未来5天的收益率\nreturn_5_day = (shift(close_0, -5)-shift(open_0, -1))/shift(open_0, -1)\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-493"}],"output_ports":[{"name":"data","node_id":"-493"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-2497","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v7","parameters":[],"input_ports":[{"name":"input_1","node_id":"-2497"}],"output_ports":[{"name":"data_1","node_id":"-2497"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-2500","module_id":"BigQuantSpace.aa.aa-v5","parameters":[{"name":"day_number","value":100,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-2500"}],"output_ports":[{"name":"data","node_id":"-2500"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-456","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"def talib_KDJ(df,high, low, close, fastk_period=9, slowk_period=3, slowd_period=3):\n #计算kd指标\n k, d = talib.STOCH(high, low, close, \n fastk_period=fastk_period, \n slowk_period=slowk_period, \n slowd_period=slowd_period)\n j = 3 * k - 2 *d\n return j \n\n# 因为这俩表达式是我们新自定义的表达式,因此需要声明,以便在输入特征列表可使用\nbigquant_run = {\n 'talib_KDJ_j':talib_KDJ\n}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-456"},{"name":"features","node_id":"-456"}],"output_ports":[{"name":"data","node_id":"-456"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-449","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-449"},{"name":"features","node_id":"-449"}],"output_ports":[{"name":"data","node_id":"-449"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-444","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"talib_KDJ_j(high_0,low_0,close_0)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-444"}],"output_ports":[{"name":"data","node_id":"-444"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-174","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-27","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-174"}],"output_ports":[{"name":"data","node_id":"-174"}],"cacheable":true,"seq_num":29,"comment":"","comment_collapsed":true},{"node_id":"-183","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-183"},{"name":"data2","node_id":"-183"}],"output_ports":[{"name":"data","node_id":"-183"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-189","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"talib_KDJ_j(high_0,low_0,close_0)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-189"}],"output_ports":[{"name":"data","node_id":"-189"}],"cacheable":true,"seq_num":30,"comment":"","comment_collapsed":true},{"node_id":"-194","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-194"},{"name":"features","node_id":"-194"}],"output_ports":[{"name":"data","node_id":"-194"}],"cacheable":true,"seq_num":31,"comment":"","comment_collapsed":true},{"node_id":"-201","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"def talib_KDJ(df,high, low, close, fastk_period=9, slowk_period=3, slowd_period=3):\n #计算kd指标\n k, d = talib.STOCH(high, low, close, \n fastk_period=fastk_period, \n slowk_period=slowk_period, \n slowd_period=slowd_period)\n j = 3 * k - 2 *d\n return j \n\n# 因为这俩表达式是我们新自定义的表达式,因此需要声明,以便在输入特征列表可使用\nbigquant_run = {\n 'talib_KDJ_j':talib_KDJ\n}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-201"},{"name":"features","node_id":"-201"}],"output_ports":[{"name":"data","node_id":"-201"}],"cacheable":true,"seq_num":32,"comment":"","comment_collapsed":true},{"node_id":"-210","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-210"},{"name":"data2","node_id":"-210"}],"output_ports":[{"name":"data","node_id":"-210"}],"cacheable":true,"seq_num":33,"comment":"","comment_collapsed":true},{"node_id":"-216","module_id":"BigQuantSpace.filter_stockmarket.filter_stockmarket-v2","parameters":[{"name":"start","value":"8","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-216"}],"output_ports":[{"name":"data_1","node_id":"-216"}],"cacheable":true,"seq_num":34,"comment":"","comment_collapsed":true},{"node_id":"-220","module_id":"BigQuantSpace.filter_stockmarket.filter_stockmarket-v2","parameters":[{"name":"start","value":"8","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-220"}],"output_ports":[{"name":"data_1","node_id":"-220"}],"cacheable":true,"seq_num":35,"comment":"","comment_collapsed":true},{"node_id":"-340","module_id":"BigQuantSpace.filter_stockmarket.filter_stockmarket-v2","parameters":[{"name":"start","value":"3","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-340"}],"output_ports":[{"name":"data_1","node_id":"-340"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-2493","module_id":"BigQuantSpace.filter_stockmarket.filter_stockmarket-v2","parameters":[{"name":"start","value":"3","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2493"}],"output_ports":[{"name":"data_1","node_id":"-2493"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-970","module_id":"BigQuantSpace.hyper_rolling_train.hyper_rolling_train-v1","parameters":[{"name":"run","value":"def bigquant_run(\n bq_graph,\n inputs,\n trading_days_market='CN', # 使用那个市场的交易日历, TODO\n train_instruments_mid='m29', # 训练数据 证券代码列表 模块id\n test_instruments_mid='m9', # 测试数据 证券代码列表 模块id\n predict_mid='m37', # 预测 模块id\n trade_mid='m19', # 回测 模块id\n model_train_mid='m6', # 模型训练 模块id\n start_date='2017-01-01', # 数据开始日期\n end_date=T.live_run_param('trading_date', '2023-02-12'), # 数据结束日期\n train_update_days=250, # 更新周期,按交易日计算,每多少天更新一次\n train_update_days_for_live=None, #模拟实盘模式下的更新周期,按交易日计算,每多少天更新一次。如果需要在模拟实盘阶段使用不同的模型更新周期,可以设置这个参数\n train_data_min_days=150, # 最小数据天数,按交易日计算,所以第一个滚动的结束日期是 从开始日期到开始日期+最小数据天数\n train_data_max_days=250, # 最大数据天数,按交易日计算,0,表示没有限制,否则每一个滚动的开始日期=max(此滚动的结束日期-最大数据天数, 开始日期\n rolling_count_for_live=1, #实盘模式下滚动次数,模拟实盘模式下,取最后多少次滚动。一般在模拟实盘模式下,只用到最后一次滚动训练的模型,这里可以设置为1;如果你的滚动训练数据时间段很短,以至于期间可能没有训练数据,这里可以设置大一点。0表示没有限制\n):\n \n def merge_datasources(input_1):\n # 合并多个滚动回测的预测数据\n df_list = [ds[0].read_df().set_index('date').loc[ds[1]:].reset_index() for ds in input_1]\n df = pd.concat(df_list)\n instrument_data = {\n 'start_date': df['date'].min().strftime('%Y-%m-%d'),\n 'end_date': df['date'].max().strftime('%Y-%m-%d'),\n 'instruments': list(set(df['instrument'])),\n }\n return Outputs(data=DataSource.write_df(df), instrument_data=DataSource.write_pickle(instrument_data))\n \n def gen_rolling_dates(trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live):\n # 是否实盘模式\n tdays = list(D.trading_days(market=trading_days_market, start_date=start_date, end_date=end_date)['date'])\n is_live_run = T.live_run_param('trading_date', None) is not None\n\n if is_live_run and train_update_days_for_live:\n train_update_days = train_update_days_for_live\n\n rollings = []\n train_end_date = train_data_min_days\n while train_end_date < len(tdays):\n if train_data_max_days is not None and train_data_max_days > 0:\n train_start_date = max(train_end_date - train_data_max_days, 0)\n else:\n train_start_date = 0\n rollings.append({\n 'train_start_date': tdays[train_start_date].strftime('%Y-%m-%d'),\n 'train_end_date': tdays[train_end_date - 1].strftime('%Y-%m-%d'),\n 'test_start_date': tdays[train_end_date].strftime('%Y-%m-%d'),\n 'test_end_date': tdays[min(train_end_date + train_update_days, len(tdays)) - 1].strftime('%Y-%m-%d'),\n })\n train_end_date += train_update_days\n\n if not rollings:\n raise Exception('没有滚动需要执行,请检查配置')\n\n if is_live_run and rolling_count_for_live:\n rollings = rollings[-rolling_count_for_live:]\n\n return rollings\n\n g = bq_graph\n\n rolling_dates = gen_rolling_dates(\n trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)\n print('====='*5, '全部滚动的时间区间为:', rolling_dates)\n\n # 训练和预测\n results = []\n for rolling in rolling_dates: # 回测区间\n for nt in [10,20,30]: # number_of_trees\n for lr in [0.1,0.2]: # learning_of_rate\n parameters = {}\n # parameters[trade_mid + '.__enabled__'] = False # 将回测模块先注释\n parameters[model_train_mid + '.number_of_trees'] = nt\n parameters[model_train_mid + '.learning_rate'] = lr\n \n parameters[model_train_mid + '.plot_charts'] = False # 不绘制特征重要性图\n parameters[trade_mid + '.plot_charts'] = False # 不绘制单次滚动回测的图\n parameters[train_instruments_mid + '.start_date'] = rolling['train_start_date']\n parameters[train_instruments_mid + '.end_date'] = rolling['train_end_date']\n parameters[test_instruments_mid + '.start_date'] = rolling['test_start_date']\n parameters[test_instruments_mid + '.end_date'] = rolling['test_end_date']\n print('本次滚动回测的参数为:', nt, lr, rolling, parameters)\n \n output = {'参数详情':(nt,lr), 'graph_data':g.run(parameters)} # 将参数和图的结果保存下来\n results.append(output)\n \n # 整理预测数据\n performance_df = pd.DataFrame()\n\n for r in results:\n para_info = r['参数详情']\n graph_data = r['graph_data']\n test_end = graph_data[test_instruments_mid].data.read()['end_date']\n performance = graph_data[trade_mid].raw_perf.read()['sharpe'].tail(1).values[0] # 选择夏普比最大的参数组合\n\n tmp = pd.DataFrame({'test_end':[test_end], 'para_info':[para_info], 'performance':[performance]}) # 单次结果\n performance_df = performance_df.append(tmp)\n performance_df.index = range(len(performance_df))\n fine_paras_df = performance_df.groupby('test_end').apply(lambda x:x.sort_values('performance', ascending=False).head(1)) \n\n # 下列两行代码的目的:上一次滚动的最佳参数应用在下一次的预测集,因此需要关联起来,以此去找到图结果(graph_data)\n para_lst = fine_paras_df.para_info.tolist()[ :fine_paras_df.shape[0]-1] \n test_end_lst = fine_paras_df.test_end.tolist()[-1*(fine_paras_df.shape[0]-1): ] \n\n\n fine_para_ix = []\n for s in range(len(para_lst)):\n test_dt = test_end_lst[s]\n para = para_lst[s]\n select_df = performance_df[(performance_df['test_end'] == test_dt) & (performance_df['para_info'] == para)]\n ix = select_df.index.values[0]\n fine_para_ix.append(ix)\n print('----', ix )\n all_results = np.array(results) # 转换成array 便于批量抽取某些位置的元素\n fine_results = [r['graph_data'] for r in all_results[fine_para_ix]]\n \n # 合并预测结果并回测\n mx = M.cached.v3(run=merge_datasources, input_1=[[result[predict_mid].predictions, result[test_instruments_mid].data.read_pickle()['start_date']] for result in fine_results])\n parameters = {}\n parameters['*.__enabled__'] = False # 将所有模块的状态设置为不运行\n parameters[trade_mid + '.__enabled__'] = True # 启动回测模块,只运行该模块\n parameters[trade_mid + '.instruments'] = mx.instrument_data\n parameters[trade_mid + '.options_data'] = mx.data\n parameters[trade_mid + '.plot_charts'] = True # 需要绘制全部结果图\n print('====='*5, '合并预测结果并回测!')\n\n trade = g.run(parameters)\n return {'rollings': results, 'fine_results': fine_results, 'trade': trade}\n","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-970"},{"name":"input_1","node_id":"-970"},{"name":"input_2","node_id":"-970"},{"name":"input_3","node_id":"-970"}],"output_ports":[{"name":"result","node_id":"-970"}],"cacheable":false,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"2","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":36,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":37,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='-158,-25,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='819,-335,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='305,184,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1335,-120,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='491,564,200,200'/><node_position Node='-86' Position='1105,632,200,200'/><node_position Node='-215' Position='496,-191,200,200'/><node_position Node='-222' Position='514,-45,200,200'/><node_position Node='-231' Position='1090,240,200,200'/><node_position Node='-238' Position='1092,324,200,200'/><node_position Node='-250' Position='967,1036,200,200'/><node_position Node='-348' Position='1107,568,200,200'/><node_position Node='-329' Position='1092,407,200,200'/><node_position Node='-471' Position='1142,843,200,200'/><node_position Node='-479' Position='1132,925,200,200'/><node_position Node='-487' Position='1146,783,200,200'/><node_position Node='-493' Position='854,61,200,200'/><node_position Node='-2497' Position='426,294,200,200'/><node_position Node='-2500' Position='493,497,200,200'/><node_position Node='-456' Position='214,-48,200,200'/><node_position Node='-449' Position='69,-136,200,200'/><node_position Node='-444' Position='200,-206,200,200'/><node_position Node='-174' Position='-61,-297,200,200'/><node_position Node='-183' Position='367,82,200,200'/><node_position Node='-189' Position='1584,169,200,200'/><node_position Node='-194' Position='1453,239,200,200'/><node_position Node='-201' Position='1598,327,200,200'/><node_position Node='-210' Position='1410,407,200,200'/><node_position Node='-216' Position='473,408,200,200'/><node_position Node='-220' Position='1103,522,200,200'/><node_position Node='-340' Position='1097,477,200,200'/><node_position Node='-2493' Position='467,354,200,200'/><node_position Node='-970' Position='-420,-229,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='629,656,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='736,763,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [40]:
    # 本代码由可视化策略环境自动生成 2023年2月16日 16:54
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    def talib_KDJ(df,high, low, close, fastk_period=9, slowk_period=3, slowd_period=3):
        #计算kd指标
        k, d = talib.STOCH(high, low, close, 
                                           fastk_period=fastk_period, 
                                           slowk_period=slowk_period, 
                                           slowd_period=slowd_period)
        j = 3 * k - 2 *d
        return j 
    
    # 因为这俩表达式是我们新自定义的表达式,因此需要声明,以便在输入特征列表可使用
    m18_user_functions_bigquant_run = {
        'talib_KDJ_j':talib_KDJ
    }
    def talib_KDJ(df,high, low, close, fastk_period=9, slowk_period=3, slowd_period=3):
        #计算kd指标
        k, d = talib.STOCH(high, low, close, 
                                           fastk_period=fastk_period, 
                                           slowk_period=slowk_period, 
                                           slowd_period=slowd_period)
        j = 3 * k - 2 *d
        return j 
    
    # 因为这俩表达式是我们新自定义的表达式,因此需要声明,以便在输入特征列表可使用
    m25_user_functions_bigquant_run = {
        'talib_KDJ_j':talib_KDJ
    }
    def talib_KDJ(df,high, low, close, fastk_period=9, slowk_period=3, slowd_period=3):
        #计算kd指标
        k, d = talib.STOCH(high, low, close, 
                                           fastk_period=fastk_period, 
                                           slowk_period=slowk_period, 
                                           slowd_period=slowd_period)
        j = 3 * k - 2 *d
        return j 
    
    # 因为这俩表达式是我们新自定义的表达式,因此需要声明,以便在输入特征列表可使用
    m16_user_functions_bigquant_run = {
        'talib_KDJ_j':talib_KDJ
    }
    def talib_KDJ(df,high, low, close, fastk_period=9, slowk_period=3, slowd_period=3):
        #计算kd指标
        k, d = talib.STOCH(high, low, close, 
                                           fastk_period=fastk_period, 
                                           slowk_period=slowk_period, 
                                           slowd_period=slowd_period)
        j = 3 * k - 2 *d
        return j 
    
    # 因为这俩表达式是我们新自定义的表达式,因此需要声明,以便在输入特征列表可使用
    m32_user_functions_bigquant_run = {
        'talib_KDJ_j':talib_KDJ
    }
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.34
        context.options['hold_days'] = 5
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        
        today = data.current_dt.strftime('%Y-%m-%d')
        
        #------------------------------------------止损模块START--------------------------------------------
        equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}
        positions_stop={e.symbol:p.cost_basis for e,p in context.portfolio.positions.items()}
        
        # 新建当日止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断
        stoploss_stock = [] 
        stopwin_stock=[]
        if len(equities) > 0:
            for i in equities.keys():
                stock_cost=positions_stop[i]
                stock_market_price = data.current(context.symbol(i), 'price')  # 最新市场价格
                last_sale_date = equities[i].last_sale_date   # 上次交易日期
                delta_days = data.current_dt - last_sale_date  
                hold_days = delta_days.days # 持仓天数
                # 建仓以来的最高价
                highest_price_since_buy = data.history(context.symbol(i), 'high', hold_days, '1d').max()
                # 确定止损位置
                stoploss_line = stock_cost * 0.9
                #record('止损位置', stoploss_line)
                # 如果价格下穿止损位置
                if stock_market_price < stoploss_line:
                    context.order_target_percent(context.symbol(i), 0)     
                    stoploss_stock.append(i)
                if stock_market_price/stock_cost > 1.06 and data.can_trade(context.symbol(i)) and not context.has_unfinished_sell_order(i):
                    context.order_target_percent(context.symbol(i),0)      
                    stopwin_stock.append(i)
            if len(stoploss_stock)>0:
                print('日期:', today, '股票:', stoploss_stock, '出现跟踪止损状况')
            if len(stopwin_stock)>0:
                print(today,'止盈股票列表',stopwin_stock)
        #-------------------------------------------止损模块END---------------------------------------------    
        
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
        context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        sell_stock = []
    #     # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
    #     if not is_staging and cash_for_sell > 0:
    #         equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
    #         instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
    #                 lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
    #         for instrument in instruments:
    #             # 如果已经移动止损卖出过则不再轮仓卖出,以防止出现空头持仓
    #             if instrument in stoploss_stock:
    #                 continue
    #             context.order_target(context.symbol(instrument), 0)
    #             cash_for_sell -= positions[instrument]
    #             # 记录轮仓卖出的股票
    #             sell_stock.append(instrument)
    #             if cash_for_sell <= 0:
    #                 break
    #             print(today,'末位淘汰',sell_stock)
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_list = list(ranker_prediction.instrument)
        # 不再买入已经轮仓卖出和移动止损的股票,以防止出现空头持仓
        buy_instruments = [i for i in buy_list if i not in sell_stock + stoploss_stock][:len(buy_cash_weights)]
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        pass
    
    
    g = T.Graph({
    
        'm3': 'M.input_features.v1',
        'm3.features': """return_0/return_4
    pe_ttm_0
    
    """,
    
        'm21': 'M.input_features.v1',
        'm21.features_ds': T.Graph.OutputPort('m3.data'),
        'm21.features': """# 未来5天的收益率
    return_5_day = (shift(close_0, -5)-shift(open_0, -1))/shift(open_0, -1)
    
    """,
    
        'm9': 'M.instruments.v2',
        'm9.start_date': T.live_run_param('trading_date', '2017-01-02'),
        'm9.end_date': T.live_run_param('trading_date', '2018-02-15'),
        'm9.market': 'CN_STOCK_A',
        'm9.instrument_list': '',
        'm9.max_count': 0,
    
        'm17': 'M.general_feature_extractor.v7',
        'm17.instruments': T.Graph.OutputPort('m9.data'),
        'm17.features': T.Graph.OutputPort('m21.data'),
        'm17.start_date': '',
        'm17.end_date': '',
        'm17.before_start_days': 90,
    
        'm18': 'M.derived_feature_extractor.v3',
        'm18.input_data': T.Graph.OutputPort('m17.data'),
        'm18.features': T.Graph.OutputPort('m21.data'),
        'm18.date_col': 'date',
        'm18.instrument_col': 'instrument',
        'm18.drop_na': False,
        'm18.remove_extra_columns': False,
        'm18.user_functions': m18_user_functions_bigquant_run,
    
        'm27': 'M.input_features.v1',
        'm27.features': 'talib_KDJ_j(high_0,low_0,close_0)',
    
        'm29': 'M.instruments.v2',
        'm29.start_date': '2019-01-01',
        'm29.end_date': '2021-12-27',
        'm29.market': 'CN_STOCK_A',
        'm29.instrument_list': '',
        'm29.max_count': 0,
    
        'm26': 'M.general_feature_extractor.v7',
        'm26.instruments': T.Graph.OutputPort('m29.data'),
        'm26.features': T.Graph.OutputPort('m27.data'),
        'm26.start_date': '',
        'm26.end_date': '',
        'm26.before_start_days': 0,
    
        'm25': 'M.derived_feature_extractor.v3',
        'm25.input_data': T.Graph.OutputPort('m26.data'),
        'm25.features': T.Graph.OutputPort('m27.data'),
        'm25.date_col': 'date',
        'm25.instrument_col': 'instrument',
        'm25.drop_na': False,
        'm25.remove_extra_columns': False,
        'm25.user_functions': m25_user_functions_bigquant_run,
    
        'm2': 'M.advanced_auto_labeler.v2',
        'm2.instruments': T.Graph.OutputPort('m29.data'),
        'm2.label_expr': """# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    #(shift(close, -5)-shift(open, -1))/shift(open, -1)
    # product((1+shift(close, -1)/shift(open, -1)),5)
    # (1+shift(close, -1)/shift(open, -1))*(1+shift(close, -2)/shift(open, -2))*(1+shift(close, -3)/shift(open, -3))*(1+shift(close, -4)/shift(open, -4))*(1+shift(close, -5)/shift(open, -5))
    # where(shift(close, -2)/shift(open,-1)>1.025, 1, -1)
    # where(shift(close, -3)/shift(open,-1)>1.043, 2, 0)
    # where(shift(close, -4)/shift(open,-1)>1.1, 3, 0)
    # rank(all_quantile(shift(close, -3)/shift(open,-1), 0.85))
    rank(shift(close, -3)/shift(open,-1))
    shift(close, -5) / shift(open, -1) - shift(benchmark_close, -5) / shift(benchmark_open, -1)
    
    
    # 极值处理:用2%和98%分位的值做clip
    clip(label, all_quantile(label, 0.02), all_quantile(label, 0.98))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 30)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    
    
    """,
        'm2.start_date': '',
        'm2.end_date': '',
        'm2.benchmark': '000300.SHA',
        'm2.drop_na_label': True,
        'm2.cast_label_int': True,
    
        'm15': 'M.general_feature_extractor.v7',
        'm15.instruments': T.Graph.OutputPort('m29.data'),
        'm15.features': T.Graph.OutputPort('m3.data'),
        'm15.start_date': '',
        'm15.end_date': '',
        'm15.before_start_days': 90,
    
        'm16': 'M.derived_feature_extractor.v3',
        'm16.input_data': T.Graph.OutputPort('m15.data'),
        'm16.features': T.Graph.OutputPort('m3.data'),
        'm16.date_col': 'date',
        'm16.instrument_col': 'instrument',
        'm16.drop_na': False,
        'm16.remove_extra_columns': False,
        'm16.user_functions': m16_user_functions_bigquant_run,
    
        'm1': 'M.join.v3',
        'm1.data1': T.Graph.OutputPort('m25.data'),
        'm1.data2': T.Graph.OutputPort('m16.data'),
        'm1.on': 'date,instrument',
        'm1.how': 'inner',
        'm1.sort': False,
    
        'm7': 'M.join.v3',
        'm7.data1': T.Graph.OutputPort('m2.data'),
        'm7.data2': T.Graph.OutputPort('m1.data'),
        'm7.on': 'date,instrument',
        'm7.how': 'inner',
        'm7.sort': False,
    
        'm23': 'M.filtet_st_stock.v7',
        'm23.input_1': T.Graph.OutputPort('m7.data'),
    
        'm22': 'M.filter_stockmarket.v2',
        'm22.input_1': T.Graph.OutputPort('m23.data_1'),
        'm22.start': '3',
    
        'm34': 'M.filter_stockmarket.v2',
        'm34.input_1': T.Graph.OutputPort('m22.data_1'),
        'm34.start': '8',
    
        'm24': 'M.aa.v5',
        'm24.input_data': T.Graph.OutputPort('m34.data_1'),
        'm24.day_number': 100,
    
        'm13': 'M.dropnan.v1',
        'm13.input_data': T.Graph.OutputPort('m24.data'),
    
        'm36': 'M.stock_ranker_train.v6',
        'm36.training_ds': T.Graph.OutputPort('m13.data'),
        'm36.features': T.Graph.OutputPort('m3.data'),
        'm36.learning_algorithm': '排序',
        'm36.number_of_leaves': 30,
        'm36.minimum_docs_per_leaf': 1000,
        'm36.number_of_trees': 2,
        'm36.learning_rate': 0.1,
        'm36.max_bins': 1023,
        'm36.feature_fraction': 1,
        'm36.data_row_fraction': 1,
        'm36.plot_charts': True,
        'm36.ndcg_discount_base': 1,
        'm36.m_lazy_run': False,
    
        'm30': 'M.input_features.v1',
        'm30.features': 'talib_KDJ_j(high_0,low_0,close_0)',
    
        'm31': 'M.general_feature_extractor.v7',
        'm31.instruments': T.Graph.OutputPort('m9.data'),
        'm31.features': T.Graph.OutputPort('m30.data'),
        'm31.start_date': '',
        'm31.end_date': '',
        'm31.before_start_days': 0,
    
        'm32': 'M.derived_feature_extractor.v3',
        'm32.input_data': T.Graph.OutputPort('m31.data'),
        'm32.features': T.Graph.OutputPort('m30.data'),
        'm32.date_col': 'date',
        'm32.instrument_col': 'instrument',
        'm32.drop_na': False,
        'm32.remove_extra_columns': False,
        'm32.user_functions': m32_user_functions_bigquant_run,
    
        'm33': 'M.join.v3',
        'm33.data1': T.Graph.OutputPort('m18.data'),
        'm33.data2': T.Graph.OutputPort('m32.data'),
        'm33.on': 'date,instrument',
        'm33.how': 'inner',
        'm33.sort': False,
    
        'm4': 'M.filtet_st_stock.v7',
        'm4.input_1': T.Graph.OutputPort('m33.data'),
    
        'm5': 'M.filter_stockmarket.v2',
        'm5.input_1': T.Graph.OutputPort('m4.data_1'),
        'm5.start': '3',
    
        'm35': 'M.filter_stockmarket.v2',
        'm35.input_1': T.Graph.OutputPort('m5.data_1'),
        'm35.start': '8',
    
        'm10': 'M.aa.v5',
        'm10.input_data': T.Graph.OutputPort('m35.data_1'),
        'm10.day_number': 100,
    
        'm14': 'M.dropnan.v1',
        'm14.input_data': T.Graph.OutputPort('m10.data'),
    
        'm37': 'M.stock_ranker_predict.v5',
        'm37.model': T.Graph.OutputPort('m36.model'),
        'm37.data': T.Graph.OutputPort('m14.data'),
        'm37.m_lazy_run': False,
    
        'm11': 'M.join.v3',
        'm11.data1': T.Graph.OutputPort('m37.predictions'),
        'm11.data2': T.Graph.OutputPort('m14.data'),
        'm11.on': 'date,instrument',
        'm11.how': 'inner',
        'm11.sort': False,
    
        'm6': 'M.score_group_filter.v3',
        'm6.input_1': T.Graph.OutputPort('m11.data'),
        'm6.分组': 10,
        'm6.区间1': 10,
        'm6.区间2': 9,
        'm6.区间3': 8,
    
        'm8': 'M.sort.v5',
        'm8.input_ds': T.Graph.OutputPort('m6.data_1'),
        'm8.sort_by': 'score',
        'm8.group_by': 'date',
        'm8.keep_columns': '',
        'm8.ascending': True,
    
        'm19': 'M.trade.v4',
        'm19.instruments': T.Graph.OutputPort('m9.data'),
        'm19.options_data': T.Graph.OutputPort('m8.sorted_data'),
        'm19.start_date': '',
        'm19.end_date': '',
        'm19.initialize': m19_initialize_bigquant_run,
        'm19.handle_data': m19_handle_data_bigquant_run,
        'm19.prepare': m19_prepare_bigquant_run,
        'm19.volume_limit': 0.025,
        'm19.order_price_field_buy': 'open',
        'm19.order_price_field_sell': 'close',
        'm19.capital_base': 50000,
        'm19.auto_cancel_non_tradable_orders': True,
        'm19.data_frequency': 'daily',
        'm19.price_type': '真实价格',
        'm19.product_type': '股票',
        'm19.plot_charts': True,
        'm19.backtest_only': False,
        'm19.benchmark': '000300.SHA',
    })
    
    # g.run({})
    
    
    def m28_run_bigquant_run(
        bq_graph,
        inputs,
        trading_days_market='CN', # 使用那个市场的交易日历, TODO
        train_instruments_mid='m29', # 训练数据 证券代码列表 模块id
        test_instruments_mid='m9', # 测试数据 证券代码列表 模块id
        predict_mid='m37', # 预测 模块id
        trade_mid='m19', # 回测 模块id
        model_train_mid='m6', # 模型训练 模块id
        start_date='2017-01-01', # 数据开始日期
        end_date=T.live_run_param('trading_date', '2023-02-12'), # 数据结束日期
        train_update_days=250, # 更新周期,按交易日计算,每多少天更新一次
        train_update_days_for_live=None, #模拟实盘模式下的更新周期,按交易日计算,每多少天更新一次。如果需要在模拟实盘阶段使用不同的模型更新周期,可以设置这个参数
        train_data_min_days=150, # 最小数据天数,按交易日计算,所以第一个滚动的结束日期是 从开始日期到开始日期+最小数据天数
        train_data_max_days=250, # 最大数据天数,按交易日计算,0,表示没有限制,否则每一个滚动的开始日期=max(此滚动的结束日期-最大数据天数, 开始日期
        rolling_count_for_live=1, #实盘模式下滚动次数,模拟实盘模式下,取最后多少次滚动。一般在模拟实盘模式下,只用到最后一次滚动训练的模型,这里可以设置为1;如果你的滚动训练数据时间段很短,以至于期间可能没有训练数据,这里可以设置大一点。0表示没有限制
    ):
        
        def merge_datasources(input_1):
            # 合并多个滚动回测的预测数据
            df_list = [ds[0].read_df().set_index('date').loc[ds[1]:].reset_index() for ds in input_1]
            df = pd.concat(df_list)
            instrument_data = {
                'start_date': df['date'].min().strftime('%Y-%m-%d'),
                'end_date': df['date'].max().strftime('%Y-%m-%d'),
                'instruments': list(set(df['instrument'])),
            }
            return Outputs(data=DataSource.write_df(df), instrument_data=DataSource.write_pickle(instrument_data))
        
        def gen_rolling_dates(trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live):
            # 是否实盘模式
            tdays = list(D.trading_days(market=trading_days_market, start_date=start_date, end_date=end_date)['date'])
            is_live_run = T.live_run_param('trading_date', None) is not None
    
            if is_live_run and train_update_days_for_live:
                train_update_days = train_update_days_for_live
    
            rollings = []
            train_end_date = train_data_min_days
            while train_end_date < len(tdays):
                if train_data_max_days is not None and train_data_max_days > 0:
                    train_start_date = max(train_end_date - train_data_max_days, 0)
                else:
                    train_start_date = 0
                rollings.append({
                    'train_start_date': tdays[train_start_date].strftime('%Y-%m-%d'),
                    'train_end_date': tdays[train_end_date - 1].strftime('%Y-%m-%d'),
                    'test_start_date': tdays[train_end_date].strftime('%Y-%m-%d'),
                    'test_end_date': tdays[min(train_end_date + train_update_days, len(tdays)) - 1].strftime('%Y-%m-%d'),
                })
                train_end_date += train_update_days
    
            if not rollings:
                raise Exception('没有滚动需要执行,请检查配置')
    
            if is_live_run and rolling_count_for_live:
                rollings = rollings[-rolling_count_for_live:]
    
            return rollings
    
        g = bq_graph
    
        rolling_dates = gen_rolling_dates(
            trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)
        print('====='*5, '全部滚动的时间区间为:', rolling_dates)
    
        # 训练和预测
        results = []
        for rolling in rolling_dates: # 回测区间
            for nt in [10,20,30]: # number_of_trees
                for lr in [0.1,0.2]: # learning_of_rate
                    parameters = {}
                    # parameters[trade_mid + '.__enabled__'] = False # 将回测模块先注释
                    parameters[model_train_mid + '.number_of_trees'] = nt
                    parameters[model_train_mid + '.learning_rate'] = lr
                    
                    parameters[model_train_mid + '.plot_charts'] = False # 不绘制特征重要性图
                    parameters[trade_mid + '.plot_charts'] = False # 不绘制单次滚动回测的图
                    parameters[train_instruments_mid + '.start_date'] = rolling['train_start_date']
                    parameters[train_instruments_mid + '.end_date'] = rolling['train_end_date']
                    parameters[test_instruments_mid + '.start_date'] = rolling['test_start_date']
                    parameters[test_instruments_mid + '.end_date'] = rolling['test_end_date']
                    print('本次滚动回测的参数为:', nt, lr, rolling, parameters)
                    
                    output = {'参数详情':(nt,lr), 'graph_data':g.run(parameters)} # 将参数和图的结果保存下来
                    results.append(output)
                    
        # 整理预测数据
        performance_df = pd.DataFrame()
    
        for r in results:
            para_info = r['参数详情']
            graph_data = r['graph_data']
            test_end = graph_data[test_instruments_mid].data.read()['end_date']
            performance = graph_data[trade_mid].raw_perf.read()['sharpe'].tail(1).values[0] # 选择夏普比最大的参数组合
    
            tmp = pd.DataFrame({'test_end':[test_end], 'para_info':[para_info], 'performance':[performance]}) # 单次结果
            performance_df = performance_df.append(tmp)
        performance_df.index = range(len(performance_df))
        fine_paras_df = performance_df.groupby('test_end').apply(lambda x:x.sort_values('performance', ascending=False).head(1))    
    
        # 下列两行代码的目的:上一次滚动的最佳参数应用在下一次的预测集,因此需要关联起来,以此去找到图结果(graph_data)
        para_lst = fine_paras_df.para_info.tolist()[ :fine_paras_df.shape[0]-1] 
        test_end_lst = fine_paras_df.test_end.tolist()[-1*(fine_paras_df.shape[0]-1): ] 
    
    
        fine_para_ix = []
        for s in range(len(para_lst)):
            test_dt = test_end_lst[s]
            para = para_lst[s]
            select_df = performance_df[(performance_df['test_end'] == test_dt) & (performance_df['para_info'] == para)]
            ix = select_df.index.values[0]
            fine_para_ix.append(ix)
            print('----', ix )
        all_results = np.array(results) # 转换成array 便于批量抽取某些位置的元素
        fine_results = [r['graph_data'] for r in all_results[fine_para_ix]]
         
        # 合并预测结果并回测
        mx = M.cached.v3(run=merge_datasources, input_1=[[result[predict_mid].predictions, result[test_instruments_mid].data.read_pickle()['start_date']] for result in fine_results])
        parameters = {}
        parameters['*.__enabled__'] = False # 将所有模块的状态设置为不运行
        parameters[trade_mid + '.__enabled__'] = True # 启动回测模块,只运行该模块
        parameters[trade_mid + '.instruments'] = mx.instrument_data
        parameters[trade_mid + '.options_data'] = mx.data
        parameters[trade_mid + '.plot_charts'] = True # 需要绘制全部结果图
        print('====='*5, '合并预测结果并回测!')
    
        trade = g.run(parameters)
        return {'rollings': results, 'fine_results': fine_results, 'trade': trade}
    
    
    m28 = M.hyper_rolling_train.v1(
        run=m28_run_bigquant_run,
        run_now=True,
        bq_graph=g
    )
    
    ========================= 全部滚动的时间区间为: [{'train_start_date': '2017-01-03', 'train_end_date': '2017-08-14', 'test_start_date': '2017-08-15', 'test_end_date': '2018-08-21'}, {'train_start_date': '2017-08-15', 'train_end_date': '2018-08-21', 'test_start_date': '2018-08-22', 'test_end_date': '2019-08-30'}, {'train_start_date': '2018-08-22', 'train_end_date': '2019-08-30', 'test_start_date': '2019-09-02', 'test_end_date': '2020-09-10'}, {'train_start_date': '2019-09-02', 'train_end_date': '2020-09-10', 'test_start_date': '2020-09-11', 'test_end_date': '2021-09-22'}, {'train_start_date': '2020-09-11', 'train_end_date': '2021-09-22', 'test_start_date': '2021-09-23', 'test_end_date': '2022-10-10'}, {'train_start_date': '2021-09-23', 'train_end_date': '2022-10-10', 'test_start_date': '2022-10-11', 'test_end_date': '2023-02-10'}]
    本次滚动回测的参数为: 10 0.1 {'train_start_date': '2017-01-03', 'train_end_date': '2017-08-14', 'test_start_date': '2017-08-15', 'test_end_date': '2018-08-21'} {'m6.number_of_trees': 10, 'm6.learning_rate': 0.1, 'm6.plot_charts': False, 'm19.plot_charts': False, 'm29.start_date': '2017-01-03', 'm29.end_date': '2017-08-14', 'm9.start_date': '2017-08-15', 'm9.end_date': '2018-08-21'}
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-7db079a041e64a939072b6953a391800"}/bigcharts-data-end
    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-40-3b39bf1bc069> in <module>
        546 
        547 
    --> 548 m28 = M.hyper_rolling_train.v1(
        549     run=m28_run_bigquant_run,
        550     run_now=True,
    
    <ipython-input-40-3b39bf1bc069> in m28_run_bigquant_run(bq_graph, inputs, trading_days_market, train_instruments_mid, test_instruments_mid, predict_mid, trade_mid, model_train_mid, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)
        499                 print('本次滚动回测的参数为:', nt, lr, rolling, parameters)
        500 
    --> 501                 output = {'参数详情':(nt,lr), 'graph_data':g.run(parameters)} # 将参数和图的结果保存下来
        502                 results.append(output)
        503 
    
    TypeError: bigquant_run() got an unexpected keyword argument 'number_of_trees'