复制链接
克隆策略

    {"description":"实验创建于2020/2/14","graph":{"edges":[{"to_node_id":"-502:input_data","from_node_id":"-490:data"},{"to_node_id":"-502:features","from_node_id":"-497:data"}],"nodes":[{"node_id":"-490","module_id":"BigQuantSpace.use_datasource.use_datasource-v2","parameters":[{"name":"datasource_id","value":"bar1d_CN_FUND","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-490"},{"name":"features","node_id":"-490"}],"output_ports":[{"name":"data","node_id":"-490"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-497","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\n(close - shift(close,5))/shift(close,5)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-497"}],"output_ports":[{"name":"data","node_id":"-497"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-502","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-502"},{"name":"features","node_id":"-502"}],"output_ports":[{"name":"data","node_id":"-502"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-490' Position='250.18988037109375,98.18672943115234,200,200'/><node_position Node='-497' Position='481.85577392578125,105.86241912841797,200,200'/><node_position Node='-502' Position='379.97857666015625,250.3046875,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [5]:
    # 本代码由可视化策略环境自动生成 2022年11月24日 18:28
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    m1 = M.use_datasource.v2(
        datasource_id='bar1d_CN_FUND',
        start_date='2020-01-01',
        end_date='2021-01-01',
        before_start_days=90
    )
    
    m2 = M.input_features.v1(
        features="""
    # #号开始的表示注释,注释需单独一行
    # 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
    (close - shift(close,5))/shift(close,5)
    """
    )
    
    m3 = M.derived_feature_extractor.v3(
        input_data=m1.data,
        features=m2.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    In [6]:
    m3.data.read()
    
    Out[6]:
    instrument date open high low close volume amount adjust_factor turn (close - shift(close,5))/shift(close,5)
    0 150008.ZOF 2019-10-08 1.2246 1.2277 1.2246 1.2246 393500.0 4.669029e+05 1.033418 NaN NaN
    1 150009.ZOF 2019-10-08 1.7598 1.8497 1.7598 1.8028 251929.0 3.475361e+05 1.303543 NaN NaN
    2 150012.ZOF 2019-10-08 1.5267 1.5267 1.5267 1.5267 20000.0 2.012000e+04 1.517594 NaN NaN
    3 150013.ZOF 2019-10-08 1.4035 1.4654 1.4035 1.4090 13937.0 1.424751e+04 1.377322 NaN NaN
    4 150016.ZOF 2019-10-08 0.0000 0.0000 0.0000 2.5862 0.0 0.000000e+00 2.604431 NaN NaN
    ... ... ... ... ... ... ... ... ... ... ... ...
    265114 518890.HOF 2020-12-31 3.9380 3.9460 3.9250 3.9380 734670.0 2.890648e+06 1.000000 NaN 0.005875
    265115 588000.HOF 2020-12-31 1.4080 1.4350 1.4060 1.4340 880339287.0 1.254347e+09 1.000000 NaN 0.029433
    265116 588050.HOF 2020-12-31 1.3900 1.4230 1.3900 1.4220 229581499.0 3.242990e+08 1.000000 NaN 0.031930
    265117 588080.HOF 2020-12-31 1.3970 1.4210 1.3930 1.4190 292692601.0 4.129189e+08 1.000000 NaN 0.027516
    265118 588090.HOF 2020-12-31 1.4060 1.4380 1.4050 1.4340 228148372.0 3.258705e+08 1.000000 NaN 0.027221

    265119 rows × 11 columns