{"description":"实验创建于2021/9/12","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-758:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-758:features","from_node_id":"-753:data"},{"to_node_id":"-765:features","from_node_id":"-753:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"-753:data"},{"to_node_id":"-2277:features","from_node_id":"-753:data"},{"to_node_id":"-765:input_data","from_node_id":"-758:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-765:data"},{"to_node_id":"-2277:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"-2277:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"100","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":false,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-753","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"mf_net_amount_0/amount_0+1\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-753"}],"output_ports":[{"name":"data","node_id":"-753"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-758","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-758"},{"name":"features","node_id":"-758"}],"output_ports":[{"name":"data","node_id":"-758"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-765","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-765"},{"name":"features","node_id":"-765"}],"output_ports":[{"name":"data","node_id":"-765"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"30","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"1000","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"20","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":"1023","type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-2277","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"mean","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-2277"},{"name":"features","node_id":"-2277"}],"output_ports":[{"name":"data","node_id":"-2277"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='99,75.56514358520508,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='0,294.5651435852051,200,200'/><node_position Node='-753' Position='753.24755859375,0,200,200'/><node_position Node='-758' Position='428,265.5651435852051,200,200'/><node_position Node='-765' Position='425,416.5651435852051,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='436,859.5651435852051,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='253.5765380859375,561.4592781066895,200,200'/><node_position Node='-2277' Position='337.90234375,693.8712959289551,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-09-12 09:58:00.698398] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-09-12 09:58:00.901607] INFO: moduleinvoker: instruments.v2 运行完成[0.203214s].
[2021-09-12 09:58:00.912675] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-09-12 09:58:02.502944] INFO: 自动标注(股票): 加载历史数据: 23798 行
[2021-09-12 09:58:02.505312] INFO: 自动标注(股票): 开始标注 ..
[2021-09-12 09:58:02.647368] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[1.734688s].
[2021-09-12 09:58:02.653000] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-09-12 09:58:02.673038] INFO: moduleinvoker: input_features.v1 运行完成[0.020036s].
[2021-09-12 09:58:02.685403] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-09-12 09:58:03.280637] INFO: 基础特征抽取: 年份 2019, 特征行数=5961
[2021-09-12 09:58:03.957257] INFO: 基础特征抽取: 年份 2020, 特征行数=23798
[2021-09-12 09:58:04.358430] INFO: 基础特征抽取: 年份 2021, 特征行数=0
[2021-09-12 09:58:04.398907] INFO: 基础特征抽取: 总行数: 29759
[2021-09-12 09:58:04.400455] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[1.715057s].
[2021-09-12 09:58:04.408116] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-09-12 09:58:04.564239] INFO: derived_feature_extractor: 提取完成 mf_net_amount_0/amount_0+1, 0.002s
[2021-09-12 09:58:04.644335] INFO: derived_feature_extractor: /y_2019, 5961
[2021-09-12 09:58:04.757068] INFO: derived_feature_extractor: /y_2020, 23798
[2021-09-12 09:58:04.808305] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.400174s].
[2021-09-12 09:58:04.817506] INFO: moduleinvoker: join.v3 开始运行..
[2021-09-12 09:58:05.023530] INFO: join: /y_2019, 行数=0/5961, 耗时=0.064093s
[2021-09-12 09:58:05.139071] INFO: join: /y_2020, 行数=23490/23798, 耗时=0.113886s
[2021-09-12 09:58:05.175037] INFO: join: 最终行数: 23490
[2021-09-12 09:58:05.182536] INFO: moduleinvoker: join.v3 运行完成[0.365024s].
[2021-09-12 09:58:05.191605] INFO: moduleinvoker: fillnan.v1 开始运行..
[2021-09-12 09:58:05.371134] INFO: moduleinvoker: fillnan.v1 运行完成[0.179511s].
[2021-09-12 09:58:05.380936] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2021-09-12 09:58:05.491037] INFO: StockRanker: 特征预处理 ..
[2021-09-12 09:58:05.521082] INFO: StockRanker: prepare data: training ..
[2021-09-12 09:58:05.530731] INFO: StockRanker: sort ..
[2021-09-12 09:58:05.693098] ERROR: moduleinvoker: module name: cached, module version: v2, trackeback: struct.error: required argument is not an integer
[2021-09-12 09:58:05.697130] ERROR: moduleinvoker: module name: stock_ranker_train, module version: v5, trackeback: struct.error: required argument is not an integer
---------------------------------------------------------------------------
error Traceback (most recent call last)
<ipython-input-2-30b77d970e77> in <module>
79 )
80
---> 81 m6 = M.stock_ranker_train.v5(
82 training_ds=m8.data,
83 features=m3.data,
error: required argument is not an integer