{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-2469:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-266:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-298:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-293:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-141:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-266:input_1","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-2431:input_2","from_node_id":"-129:data"},{"to_node_id":"-298:input_1","from_node_id":"-129:data"},{"to_node_id":"-682:inputs","from_node_id":"-160:data"},{"to_node_id":"-4111:inputs","from_node_id":"-160:data"},{"to_node_id":"-231:inputs","from_node_id":"-196:data"},{"to_node_id":"-196:inputs","from_node_id":"-224:data"},{"to_node_id":"-238:inputs","from_node_id":"-231:data"},{"to_node_id":"-682:outputs","from_node_id":"-238:data"},{"to_node_id":"-1098:input_model","from_node_id":"-682:data"},{"to_node_id":"-1540:trained_model","from_node_id":"-1098:data"},{"to_node_id":"-2431:input_1","from_node_id":"-1540:data"},{"to_node_id":"-141:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"-436:input_1","from_node_id":"-243:data"},{"to_node_id":"-1540:input_data","from_node_id":"-251:data"},{"to_node_id":"-1098:training_data","from_node_id":"-436:data_1"},{"to_node_id":"-1098:validation_data","from_node_id":"-436:data_2"},{"to_node_id":"-288:input_data","from_node_id":"-266:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-288:data"},{"to_node_id":"-251:input_data","from_node_id":"-293:data"},{"to_node_id":"-293:input_data","from_node_id":"-298:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-2469:data"},{"to_node_id":"-224:inputs","from_node_id":"-4111:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2011-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2013-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1) - 1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0\nopen_0\nhigh_0\nlow_0 \namount_0\nturn_0 \nreturn_0\n \nclose_1\nopen_1\nhigh_1\nlow_1\nreturn_1\namount_1\nturn_1\n \nclose_2\nopen_2\nhigh_2\nlow_2\namount_2\nturn_2\nreturn_2\n \nclose_3\nopen_3\nhigh_3\nlow_3\namount_3\nturn_3\nreturn_3\n \nclose_4\nopen_4\nhigh_4\nlow_4\namount_4\nturn_4\nreturn_4\n \nmean(close_0, 5)\nmean(low_0, 5)\nmean(open_0, 5)\nmean(high_0, 5)\nmean(turn_0, 5)\nmean(amount_0, 5)\nmean(return_0, 5)\n \nts_max(close_0, 5)\nts_max(low_0, 5)\nts_max(open_0, 5)\nts_max(high_0, 5)\nts_max(turn_0, 5)\nts_max(amount_0, 5)\nts_max(return_0, 5)\n \nts_min(close_0, 5)\nts_min(low_0, 5)\nts_min(open_0, 5)\nts_min(high_0, 5)\nts_min(turn_0, 5)\nts_min(amount_0, 5)\nts_min(return_0, 5) \n \nstd(close_0, 5)\nstd(low_0, 5)\nstd(open_0, 5)\nstd(high_0, 5)\nstd(turn_0, 5)\nstd(amount_0, 5)\nstd(return_0, 5)\n \nts_rank(close_0, 5)\nts_rank(low_0, 5)\nts_rank(open_0, 5)\nts_rank(high_0, 5)\nts_rank(turn_0, 5)\nts_rank(amount_0, 5)\nts_rank(return_0, 5)\n \ndecay_linear(close_0, 5)\ndecay_linear(low_0, 5)\ndecay_linear(open_0, 5)\ndecay_linear(high_0, 5)\ndecay_linear(turn_0, 5)\ndecay_linear(amount_0, 5)\ndecay_linear(return_0, 5)\n \ncorrelation(volume_0, return_0, 5)\ncorrelation(volume_0, high_0, 5)\ncorrelation(volume_0, low_0, 5)\ncorrelation(volume_0, close_0, 5)\ncorrelation(volume_0, open_0, 5)\ncorrelation(volume_0, turn_0, 5)\n \ncorrelation(return_0, high_0, 5)\ncorrelation(return_0, low_0, 5)\ncorrelation(return_0, close_0, 5)\ncorrelation(return_0, open_0, 5)\ncorrelation(return_0, turn_0, 5)\n \ncorrelation(high_0, low_0, 5)\ncorrelation(high_0, close_0, 5)\ncorrelation(high_0, open_0, 5)\ncorrelation(high_0, turn_0, 5)\n \ncorrelation(low_0, close_0, 5)\ncorrelation(low_0, open_0, 5)\ncorrelation(low_0, turn_0, 5)\n \ncorrelation(close_0, open_0, 5)\ncorrelation(close_0, turn_0, 5)\n\ncorrelation(open_0, turn_0, 5)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2014-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2014-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 50\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"5,98","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-196","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"128","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-196"}],"output_ports":[{"name":"data","node_id":"-196"}],"cacheable":false,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-224","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.5","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-224"}],"output_ports":[{"name":"data","node_id":"-224"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.5","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":false,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":false,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-682","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-682"},{"name":"outputs","node_id":"-682"}],"output_ports":[{"name":"data","node_id":"-682"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-1098","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"10","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"from tensorflow.keras.callbacks import EarlyStopping\nbigquant_run=EarlyStopping(monitor='val_mse', min_delta=0.0001, patience=3)","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"0","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-1098"},{"name":"training_data","node_id":"-1098"},{"name":"validation_data","node_id":"-1098"}],"output_ports":[{"name":"data","node_id":"-1098"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-1540","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-1540"},{"name":"input_data","node_id":"-1540"}],"output_ports":[{"name":"data","node_id":"-1540"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-436","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n data = input_1.read()\n x_train, x_val, y_train, y_val = train_test_split(data[\"x\"], data['y'], test_size=0.1)\n data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})\n data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-436"},{"name":"input_2","node_id":"-436"},{"name":"input_3","node_id":"-436"}],"output_ports":[{"name":"data_1","node_id":"-436"},{"name":"data_2","node_id":"-436"},{"name":"data_3","node_id":"-436"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-266","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-266"},{"name":"input_2","node_id":"-266"}],"output_ports":[{"name":"data","node_id":"-266"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-293"},{"name":"features","node_id":"-293"}],"output_ports":[{"name":"data","node_id":"-293"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-298","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-298"},{"name":"input_2","node_id":"-298"}],"output_ports":[{"name":"data","node_id":"-298"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-2469","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2469"},{"name":"input_2","node_id":"-2469"}],"output_ports":[{"name":"data","node_id":"-2469"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-4111","module_id":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","parameters":[{"name":"units","value":"64","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"tanh","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_activation","value":"sigmoid","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_initializer","value":"Orthogonal","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"unit_forget_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"dropout","value":0,"type":"Literal","bound_global_parameter":null},{"name":"recurrent_dropout","value":0,"type":"Literal","bound_global_parameter":null},{"name":"return_sequences","value":"False","type":"Literal","bound_global_parameter":null},{"name":"implementation","value":"2","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-4111"}],"output_ports":[{"name":"data","node_id":"-4111"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-313","module_id":"BigQuantSpace.hyper_parameter_search.hyper_parameter_search-v1","parameters":[{"name":"param_grid_builder","value":"def bigquant_run():\n param_grid = {}\n\n # 在这里设置需要调优的参数备选\n # param_grid['m3.features'] = ['close_1/close_0', 'close_2/close_0\\nclose_3/close_0']\n param_grid['m8.units'] = [64, 128, 256]\n\n return param_grid\n","type":"Literal","bound_global_parameter":null},{"name":"scoring","value":"def bigquant_run(result):\n score = result.get('m19').read_raw_perf()['sharpe'].tail(1)[0]\n\n return {'score': score}\n","type":"Literal","bound_global_parameter":null},{"name":"search_algorithm","value":"网格搜索","type":"Literal","bound_global_parameter":null},{"name":"search_iterations","value":10,"type":"Literal","bound_global_parameter":null},{"name":"random_state","value":"","type":"Literal","bound_global_parameter":null},{"name":"workers","value":1,"type":"Literal","bound_global_parameter":null},{"name":"worker_distributed_run","value":"False","type":"Literal","bound_global_parameter":null},{"name":"worker_silent","value":"False","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-313"},{"name":"input_1","node_id":"-313"},{"name":"input_2","node_id":"-313"},{"name":"input_3","node_id":"-313"}],"output_ports":[{"name":"result","node_id":"-313"}],"cacheable":false,"seq_num":30,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='323,60,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='114,227,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='772,-47,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='291,505,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1148,129,200,200'/><node_position Node='-106' Position='441,156,200,200'/><node_position Node='-113' Position='441,235,200,200'/><node_position Node='-122' Position='1149,284,200,200'/><node_position Node='-129' Position='1156,392,200,200'/><node_position Node='-141' Position='349,1021,200,200'/><node_position Node='-160' Position='-202,35,200,200'/><node_position Node='-196' Position='-203,311,200,200'/><node_position Node='-224' Position='-201.20285034179688,215.20285034179688,200,200'/><node_position Node='-231' Position='-201,395,200,200'/><node_position Node='-238' Position='-195,470,200,200'/><node_position Node='-682' Position='-195,560,200,200'/><node_position Node='-1098' Position='28,745,200,200'/><node_position Node='-1540' Position='221,833,200,200'/><node_position Node='-2431' Position='438,934,200,200'/><node_position Node='-243' Position='294,579,200,200'/><node_position Node='-251' Position='1147,690,200,200'/><node_position Node='-436' Position='282,662,200,200'/><node_position Node='-266' Position='446,303,200,200'/><node_position Node='-288' Position='448,374,200,200'/><node_position Node='-293' Position='1150,600,200,200'/><node_position Node='-298' Position='1155,500,200,200'/><node_position Node='-2469' Position='112,314,200,200'/><node_position Node='-4111' Position='-201,128,200,200'/><node_position Node='-313' Position='-273,848,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-04-25 09:41:45.861073] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-25 09:41:46.042468] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.044128] INFO: moduleinvoker: instruments.v2 运行完成[0.183079s].
[2022-04-25 09:41:46.050807] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-04-25 09:41:46.068981] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.070880] INFO: moduleinvoker: input_features.v1 运行完成[0.020067s].
[2022-04-25 09:41:46.076279] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-25 09:41:46.097994] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.099824] INFO: moduleinvoker: instruments.v2 运行完成[0.02354s].
[2022-04-25 09:41:46.108183] INFO: moduleinvoker: dl_layer_input.v1 运行完成[0.002074s].
[2022-04-25 09:41:46.117509] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-04-25 09:41:46.131110] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.132788] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.015279s].
[2022-04-25 09:41:46.150908] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-25 09:41:46.160964] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.162477] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.011582s].
[2022-04-25 09:41:46.175373] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-25 09:41:46.189249] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.190958] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.015619s].
[2022-04-25 09:41:46.617565] INFO: moduleinvoker: dl_layer_lstm.v1 运行完成[0.419793s].
[2022-04-25 09:41:46.625997] INFO: moduleinvoker: standardlize.v9 开始运行..
[2022-04-25 09:41:46.639534] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.641797] INFO: moduleinvoker: standardlize.v9 运行完成[0.015798s].
[2022-04-25 09:41:46.650858] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-25 09:41:46.662264] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.664185] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.013326s].
[2022-04-25 09:41:46.671319] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-25 09:41:46.683193] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.685591] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.014253s].
[2022-04-25 09:41:46.698136] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.005143s].
[2022-04-25 09:41:46.706700] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-04-25 09:41:46.719146] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.722480] INFO: moduleinvoker: standardlize.v8 运行完成[0.015773s].
[2022-04-25 09:41:46.736953] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-04-25 09:41:46.751540] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.754938] INFO: moduleinvoker: standardlize.v8 运行完成[0.017985s].
[2022-04-25 09:41:46.785568] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.021922s].
[2022-04-25 09:41:46.809959] INFO: moduleinvoker: fillnan.v1 开始运行..
[2022-04-25 09:41:46.829997] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.832100] INFO: moduleinvoker: fillnan.v1 运行完成[0.0222s].
[2022-04-25 09:41:46.840986] INFO: moduleinvoker: fillnan.v1 开始运行..
[2022-04-25 09:41:46.857195] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.859213] INFO: moduleinvoker: fillnan.v1 运行完成[0.018224s].
[2022-04-25 09:41:46.872979] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.005296s].
[2022-04-25 09:41:46.898668] INFO: moduleinvoker: join.v3 开始运行..
[2022-04-25 09:41:46.918884] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.920680] INFO: moduleinvoker: join.v3 运行完成[0.022084s].
[2022-04-25 09:41:46.941449] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-04-25 09:41:46.960955] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:46.962782] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.021345s].
[2022-04-25 09:41:46.982272] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.011896s].
[2022-04-25 09:41:47.016200] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-04-25 09:41:47.049333] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:47.051322] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.035144s].
[2022-04-25 09:41:47.086356] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-25 09:41:47.170285] INFO: moduleinvoker: cached.v3 运行完成[0.08392s].
[2022-04-25 09:41:47.173678] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.116133s].
[2022-04-25 09:41:47.201571] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-25 09:41:47.231828] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:41:47.234086] INFO: moduleinvoker: cached.v3 运行完成[0.032518s].
[2022-04-25 09:41:47.247431] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2022-04-25 09:41:55.179111] INFO: dl_model_train: 准备训练,训练样本个数:1461443,迭代次数:10
[2022-04-25 09:43:08.918309] INFO: dl_model_train: 训练结束,耗时:73.74s
[2022-04-25 09:43:09.262153] INFO: moduleinvoker: dl_model_train.v1 运行完成[82.014759s].
[2022-04-25 09:43:09.269589] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2022-04-25 09:43:15.314532] INFO: moduleinvoker: dl_model_predict.v1 运行完成[6.044941s].
[2022-04-25 09:43:15.329875] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-25 09:45:31.374152] INFO: moduleinvoker: cached.v3 运行完成[136.044269s].
[2022-04-25 09:45:31.433839] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-04-25 09:45:31.441156] INFO: backtest: biglearning backtest:V8.6.2
[2022-04-25 09:45:31.443469] INFO: backtest: product_type:stock by specified
[2022-04-25 09:45:31.535031] INFO: moduleinvoker: cached.v2 开始运行..
[2022-04-25 09:45:31.546804] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:45:31.549574] INFO: moduleinvoker: cached.v2 运行完成[0.014559s].
[2022-04-25 09:45:32.865550] INFO: algo: TradingAlgorithm V1.8.7
[2022-04-25 09:45:33.500166] INFO: algo: trading transform...
[2022-04-25 09:46:11.467491] INFO: Performance: Simulated 245 trading days out of 245.
[2022-04-25 09:46:11.469504] INFO: Performance: first open: 2014-01-02 09:30:00+00:00
[2022-04-25 09:46:11.471106] INFO: Performance: last close: 2014-12-31 15:00:00+00:00
[2022-04-25 09:46:28.898239] INFO: moduleinvoker: backtest.v8 运行完成[57.464408s].
[2022-04-25 09:46:28.900425] INFO: moduleinvoker: trade.v4 运行完成[57.517294s].
[2022-04-25 09:46:30.650434] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-25 09:46:30.659409] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:30.661537] INFO: moduleinvoker: instruments.v2 运行完成[0.011108s].
[2022-04-25 09:46:30.666000] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-04-25 09:46:30.676133] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:30.678125] INFO: moduleinvoker: input_features.v1 运行完成[0.012125s].
[2022-04-25 09:46:30.683414] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-25 09:46:30.690602] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:30.692557] INFO: moduleinvoker: instruments.v2 运行完成[0.009146s].
[2022-04-25 09:46:30.701129] INFO: moduleinvoker: dl_layer_input.v1 运行完成[0.002063s].
[2022-04-25 09:46:30.714787] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-04-25 09:46:30.726663] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:30.729200] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.014422s].
[2022-04-25 09:46:30.748461] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-25 09:46:30.761028] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:30.763253] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.014801s].
[2022-04-25 09:46:30.778653] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-25 09:46:30.801223] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:30.803412] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.024756s].
[2022-04-25 09:46:31.372117] INFO: moduleinvoker: dl_layer_lstm.v1 运行完成[0.532804s].
[2022-04-25 09:46:31.396105] INFO: moduleinvoker: standardlize.v9 开始运行..
[2022-04-25 09:46:31.410777] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:31.413108] INFO: moduleinvoker: standardlize.v9 运行完成[0.016984s].
[2022-04-25 09:46:31.424291] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-25 09:46:31.436915] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:31.439196] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.014902s].
[2022-04-25 09:46:31.445832] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-25 09:46:31.456054] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:31.457997] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.012156s].
[2022-04-25 09:46:31.470322] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.005521s].
[2022-04-25 09:46:31.475859] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-04-25 09:46:31.490099] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:31.491990] INFO: moduleinvoker: standardlize.v8 运行完成[0.016131s].
[2022-04-25 09:46:31.501434] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-04-25 09:46:31.511652] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:31.513325] INFO: moduleinvoker: standardlize.v8 运行完成[0.01189s].
[2022-04-25 09:46:31.530506] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.010817s].
[2022-04-25 09:46:31.538307] INFO: moduleinvoker: fillnan.v1 开始运行..
[2022-04-25 09:46:31.547321] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:31.549092] INFO: moduleinvoker: fillnan.v1 运行完成[0.010784s].
[2022-04-25 09:46:31.556307] INFO: moduleinvoker: fillnan.v1 开始运行..
[2022-04-25 09:46:31.564658] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:31.566562] INFO: moduleinvoker: fillnan.v1 运行完成[0.010243s].
[2022-04-25 09:46:31.578737] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.005874s].
[2022-04-25 09:46:31.591259] INFO: moduleinvoker: join.v3 开始运行..
[2022-04-25 09:46:31.604384] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:31.606562] INFO: moduleinvoker: join.v3 运行完成[0.0153s].
[2022-04-25 09:46:31.627489] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-04-25 09:46:31.637132] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:31.639296] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.011821s].
[2022-04-25 09:46:31.656140] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.010709s].
[2022-04-25 09:46:31.672364] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-04-25 09:46:31.682742] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:31.684831] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.01248s].
[2022-04-25 09:46:31.728481] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-25 09:46:31.761582] INFO: moduleinvoker: cached.v3 运行完成[0.033106s].
[2022-04-25 09:46:31.764177] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.07395s].
[2022-04-25 09:46:31.782853] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-25 09:46:31.806503] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:46:31.808254] INFO: moduleinvoker: cached.v3 运行完成[0.025419s].
[2022-04-25 09:46:31.825586] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2022-04-25 09:46:40.223746] INFO: dl_model_train: 准备训练,训练样本个数:1461443,迭代次数:10
[2022-04-25 09:47:54.628108] INFO: dl_model_train: 训练结束,耗时:74.40s
[2022-04-25 09:47:55.012073] INFO: moduleinvoker: dl_model_train.v1 运行完成[83.186502s].
[2022-04-25 09:47:55.017408] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2022-04-25 09:48:05.643568] INFO: moduleinvoker: dl_model_predict.v1 运行完成[10.626167s].
[2022-04-25 09:48:05.656221] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-25 09:50:20.629416] INFO: moduleinvoker: cached.v3 运行完成[134.973183s].
[2022-04-25 09:50:20.683885] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-04-25 09:50:20.702558] INFO: backtest: biglearning backtest:V8.6.2
[2022-04-25 09:50:20.704530] INFO: backtest: product_type:stock by specified
[2022-04-25 09:50:20.826650] INFO: moduleinvoker: cached.v2 开始运行..
[2022-04-25 09:50:20.836448] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:50:20.839304] INFO: moduleinvoker: cached.v2 运行完成[0.012668s].
[2022-04-25 09:51:00.284976] INFO: algo: TradingAlgorithm V1.8.7
[2022-04-25 09:51:00.951430] INFO: algo: trading transform...
[2022-04-25 09:51:36.389724] INFO: Performance: Simulated 245 trading days out of 245.
[2022-04-25 09:51:36.391159] INFO: Performance: first open: 2014-01-02 09:30:00+00:00
[2022-04-25 09:51:36.392184] INFO: Performance: last close: 2014-12-31 15:00:00+00:00
[2022-04-25 09:52:16.395811] INFO: moduleinvoker: backtest.v8 运行完成[115.711929s].
[2022-04-25 09:52:16.397545] INFO: moduleinvoker: trade.v4 运行完成[115.760837s].
[2022-04-25 09:52:18.749999] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-25 09:52:18.762148] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:18.764274] INFO: moduleinvoker: instruments.v2 运行完成[0.014281s].
[2022-04-25 09:52:18.769144] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-04-25 09:52:18.778917] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:18.780735] INFO: moduleinvoker: input_features.v1 运行完成[0.011585s].
[2022-04-25 09:52:18.786242] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-25 09:52:18.794699] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:18.796112] INFO: moduleinvoker: instruments.v2 运行完成[0.009872s].
[2022-04-25 09:52:18.803629] INFO: moduleinvoker: dl_layer_input.v1 运行完成[0.001602s].
[2022-04-25 09:52:18.811595] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-04-25 09:52:18.824115] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:18.826007] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.014407s].
[2022-04-25 09:52:18.859223] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-25 09:52:18.869735] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:18.871675] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012479s].
[2022-04-25 09:52:18.891387] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-25 09:52:18.912614] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:18.914737] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.023366s].
[2022-04-25 09:52:19.568313] INFO: moduleinvoker: dl_layer_lstm.v1 运行完成[0.646587s].
[2022-04-25 09:52:19.589759] INFO: moduleinvoker: standardlize.v9 开始运行..
[2022-04-25 09:52:19.623369] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:19.625555] INFO: moduleinvoker: standardlize.v9 运行完成[0.035808s].
[2022-04-25 09:52:19.633696] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-25 09:52:19.658645] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:19.660909] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.027205s].
[2022-04-25 09:52:19.668570] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-25 09:52:19.680959] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:19.683077] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.014504s].
[2022-04-25 09:52:19.693964] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.004571s].
[2022-04-25 09:52:19.699557] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-04-25 09:52:19.711548] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:19.713799] INFO: moduleinvoker: standardlize.v8 运行完成[0.014229s].
[2022-04-25 09:52:19.722557] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-04-25 09:52:19.751286] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:19.753494] INFO: moduleinvoker: standardlize.v8 运行完成[0.03093s].
[2022-04-25 09:52:19.777102] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.012588s].
[2022-04-25 09:52:19.787629] INFO: moduleinvoker: fillnan.v1 开始运行..
[2022-04-25 09:52:19.797242] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:19.799569] INFO: moduleinvoker: fillnan.v1 运行完成[0.011948s].
[2022-04-25 09:52:19.808734] INFO: moduleinvoker: fillnan.v1 开始运行..
[2022-04-25 09:52:19.837030] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:19.838958] INFO: moduleinvoker: fillnan.v1 运行完成[0.030235s].
[2022-04-25 09:52:19.848665] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.004162s].
[2022-04-25 09:52:19.857023] INFO: moduleinvoker: join.v3 开始运行..
[2022-04-25 09:52:19.912702] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:19.914860] INFO: moduleinvoker: join.v3 运行完成[0.057838s].
[2022-04-25 09:52:19.931994] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-04-25 09:52:19.946811] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:19.948925] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.016932s].
[2022-04-25 09:52:19.971044] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.014042s].
[2022-04-25 09:52:19.986678] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-04-25 09:52:19.998973] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:20.001005] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.014349s].
[2022-04-25 09:52:20.047417] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-25 09:52:20.201964] INFO: moduleinvoker: cached.v3 运行完成[0.154562s].
[2022-04-25 09:52:20.204437] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.198128s].
[2022-04-25 09:52:20.216599] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-25 09:52:20.241959] INFO: moduleinvoker: 命中缓存
[2022-04-25 09:52:20.244582] INFO: moduleinvoker: cached.v3 运行完成[0.027977s].
[2022-04-25 09:52:20.254195] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2022-04-25 09:52:33.078799] INFO: dl_model_train: 准备训练,训练样本个数:1461443,迭代次数:10
[2022-04-25 09:53:52.519518] INFO: dl_model_train: 训练结束,耗时:79.44s
[2022-04-25 09:53:53.335380] INFO: moduleinvoker: dl_model_train.v1 运行完成[93.081181s].
[2022-04-25 09:53:53.340707] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2022-04-25 09:54:03.451479] INFO: moduleinvoker: dl_model_predict.v1 运行完成[10.110768s].
[2022-04-25 09:54:03.465968] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-25 10:01:16.891194] INFO: moduleinvoker: cached.v3 运行完成[433.425216s].
[2022-04-25 10:01:16.950675] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-04-25 10:01:16.966069] INFO: backtest: biglearning backtest:V8.6.2
[2022-04-25 10:01:16.969437] INFO: backtest: product_type:stock by specified
[2022-04-25 10:01:17.272162] INFO: moduleinvoker: cached.v2 开始运行..
[2022-04-25 10:01:17.309562] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:01:17.312012] INFO: moduleinvoker: cached.v2 运行完成[0.03987s].
[2022-04-25 10:02:08.185597] INFO: algo: TradingAlgorithm V1.8.7
[2022-04-25 10:02:08.794739] INFO: algo: trading transform...
[2022-04-25 10:02:59.924758] INFO: Performance: Simulated 245 trading days out of 245.
[2022-04-25 10:02:59.927262] INFO: Performance: first open: 2014-01-02 09:30:00+00:00
[2022-04-25 10:02:59.929307] INFO: Performance: last close: 2014-12-31 15:00:00+00:00
[2022-04-25 10:03:28.930115] INFO: moduleinvoker: backtest.v8 运行完成[131.979428s].
[2022-04-25 10:03:28.932277] INFO: moduleinvoker: trade.v4 运行完成[132.032402s].
[2022-04-25 10:03:29.848848] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-25 10:03:29.860713] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:29.863498] INFO: moduleinvoker: instruments.v2 运行完成[0.014639s].
[2022-04-25 10:03:29.869308] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-04-25 10:03:29.887134] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:29.889915] INFO: moduleinvoker: input_features.v1 运行完成[0.020616s].
[2022-04-25 10:03:29.896572] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-25 10:03:29.905880] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:29.908633] INFO: moduleinvoker: instruments.v2 运行完成[0.012034s].
[2022-04-25 10:03:29.920320] INFO: moduleinvoker: dl_layer_input.v1 运行完成[0.002809s].
[2022-04-25 10:03:29.933453] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-04-25 10:03:29.953849] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:29.961760] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.02787s].
[2022-04-25 10:03:29.992995] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-25 10:03:30.015732] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:30.018297] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.025345s].
[2022-04-25 10:03:30.037047] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-25 10:03:30.047384] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:30.050566] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.013538s].
[2022-04-25 10:03:30.653835] INFO: moduleinvoker: dl_layer_lstm.v1 运行完成[0.591353s].
[2022-04-25 10:03:30.660501] INFO: moduleinvoker: standardlize.v9 开始运行..
[2022-04-25 10:03:30.672383] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:30.674831] INFO: moduleinvoker: standardlize.v9 运行完成[0.014328s].
[2022-04-25 10:03:30.682907] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-25 10:03:30.692188] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:30.695560] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.012646s].
[2022-04-25 10:03:30.707141] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-25 10:03:30.720066] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:30.722367] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.015225s].
[2022-04-25 10:03:30.734489] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.005516s].
[2022-04-25 10:03:30.739652] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-04-25 10:03:30.748740] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:30.750152] INFO: moduleinvoker: standardlize.v8 运行完成[0.010511s].
[2022-04-25 10:03:30.755890] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-04-25 10:03:30.766022] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:30.768075] INFO: moduleinvoker: standardlize.v8 运行完成[0.012177s].
[2022-04-25 10:03:30.788866] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.014277s].
[2022-04-25 10:03:30.798696] INFO: moduleinvoker: fillnan.v1 开始运行..
[2022-04-25 10:03:30.812042] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:30.814152] INFO: moduleinvoker: fillnan.v1 运行完成[0.015452s].
[2022-04-25 10:03:30.823065] INFO: moduleinvoker: fillnan.v1 开始运行..
[2022-04-25 10:03:30.834886] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:30.836928] INFO: moduleinvoker: fillnan.v1 运行完成[0.013862s].
[2022-04-25 10:03:30.846970] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.003961s].
[2022-04-25 10:03:30.855067] INFO: moduleinvoker: join.v3 开始运行..
[2022-04-25 10:03:30.865792] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:30.867859] INFO: moduleinvoker: join.v3 运行完成[0.012783s].
[2022-04-25 10:03:30.884009] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-04-25 10:03:30.895794] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:30.897872] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.013879s].
[2022-04-25 10:03:30.919142] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.013711s].
[2022-04-25 10:03:30.936157] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-04-25 10:03:30.949958] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:30.951898] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.015746s].
[2022-04-25 10:03:30.996449] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-25 10:03:31.035006] INFO: moduleinvoker: cached.v3 运行完成[0.03859s].
[2022-04-25 10:03:31.037352] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.079392s].
[2022-04-25 10:03:31.050430] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-25 10:03:31.066876] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:03:31.069091] INFO: moduleinvoker: cached.v3 运行完成[0.018674s].
[2022-04-25 10:03:31.081230] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2022-04-25 10:03:39.177676] INFO: dl_model_train: 准备训练,训练样本个数:1461443,迭代次数:10
[2022-04-25 10:04:59.421625] INFO: dl_model_train: 训练结束,耗时:80.24s
[2022-04-25 10:04:59.933911] INFO: moduleinvoker: dl_model_train.v1 运行完成[88.852738s].
[2022-04-25 10:04:59.944023] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2022-04-25 10:05:08.301616] INFO: moduleinvoker: dl_model_predict.v1 运行完成[8.357591s].
[2022-04-25 10:05:08.313819] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-25 10:08:35.373286] INFO: moduleinvoker: cached.v3 运行完成[207.059461s].
[2022-04-25 10:08:35.431839] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-04-25 10:08:35.436770] INFO: backtest: biglearning backtest:V8.6.2
[2022-04-25 10:08:35.438094] INFO: backtest: product_type:stock by specified
[2022-04-25 10:08:35.564921] INFO: moduleinvoker: cached.v2 开始运行..
[2022-04-25 10:08:35.575805] INFO: moduleinvoker: 命中缓存
[2022-04-25 10:08:35.577698] INFO: moduleinvoker: cached.v2 运行完成[0.012795s].
[2022-04-25 10:08:55.732344] INFO: algo: TradingAlgorithm V1.8.7
[2022-04-25 10:08:56.321440] INFO: algo: trading transform...
[2022-04-25 10:09:33.820300] INFO: Performance: Simulated 245 trading days out of 245.
[2022-04-25 10:09:33.822113] INFO: Performance: first open: 2014-01-02 09:30:00+00:00
[2022-04-25 10:09:33.823680] INFO: Performance: last close: 2014-12-31 15:00:00+00:00
Fitting 1 folds for each of 3 candidates, totalling 3 fits
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[CV 1/1; 1/3] START m8.units=64.................................................
Epoch 1/10
1428/1428 - 12s - loss: 0.9923 - mse: 0.9923 - val_loss: 0.9853 - val_mse: 0.9853
Epoch 2/10
1428/1428 - 6s - loss: 0.9846 - mse: 0.9846 - val_loss: 0.9817 - val_mse: 0.9817
Epoch 3/10
1428/1428 - 6s - loss: 0.9813 - mse: 0.9813 - val_loss: 0.9788 - val_mse: 0.9788
Epoch 4/10
1428/1428 - 6s - loss: 0.9788 - mse: 0.9788 - val_loss: 0.9759 - val_mse: 0.9759
Epoch 5/10
1428/1428 - 6s - loss: 0.9764 - mse: 0.9764 - val_loss: 0.9733 - val_mse: 0.9733
Epoch 6/10
1428/1428 - 6s - loss: 0.9740 - mse: 0.9740 - val_loss: 0.9724 - val_mse: 0.9724
Epoch 7/10
1428/1428 - 6s - loss: 0.9719 - mse: 0.9719 - val_loss: 0.9714 - val_mse: 0.9714
Epoch 8/10
1428/1428 - 6s - loss: 0.9702 - mse: 0.9702 - val_loss: 0.9711 - val_mse: 0.9711
Epoch 9/10
1428/1428 - 6s - loss: 0.9679 - mse: 0.9679 - val_loss: 0.9680 - val_mse: 0.9680
Epoch 10/10
1428/1428 - 6s - loss: 0.9662 - mse: 0.9662 - val_loss: 0.9680 - val_mse: 0.9680
563/563 - 2s
DataSource(c1088728ccce411f924b1b4ee5963c71T)
- 收益率146.06%
- 年化收益率152.47%
- 基准收益率51.66%
- 阿尔法0.95
- 贝塔0.63
- 夏普比率3.61
- 胜率0.65
- 盈亏比1.28
- 收益波动率25.83%
- 信息比率0.14
- 最大回撤12.6%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-151724d558764c06aacaa3a92b91cc24"}/bigcharts-data-end
[CV 1/1; 1/3] END ...........m8.units=64; score: (test=3.608) total time= 4.7min
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 4.7min remaining: 0.0s
[CV 1/1; 2/3] START m8.units=128................................................
Epoch 1/10
1428/1428 - 12s - loss: 0.9919 - mse: 0.9919 - val_loss: 0.9842 - val_mse: 0.9842
Epoch 2/10
1428/1428 - 6s - loss: 0.9840 - mse: 0.9840 - val_loss: 0.9803 - val_mse: 0.9803
Epoch 3/10
1428/1428 - 6s - loss: 0.9797 - mse: 0.9797 - val_loss: 0.9758 - val_mse: 0.9758
Epoch 4/10
1428/1428 - 6s - loss: 0.9760 - mse: 0.9760 - val_loss: 0.9730 - val_mse: 0.9730
Epoch 5/10
1428/1428 - 6s - loss: 0.9726 - mse: 0.9726 - val_loss: 0.9699 - val_mse: 0.9699
Epoch 6/10
1428/1428 - 6s - loss: 0.9688 - mse: 0.9688 - val_loss: 0.9677 - val_mse: 0.9677
Epoch 7/10
1428/1428 - 6s - loss: 0.9653 - mse: 0.9653 - val_loss: 0.9662 - val_mse: 0.9662
Epoch 8/10
1428/1428 - 7s - loss: 0.9613 - mse: 0.9613 - val_loss: 0.9643 - val_mse: 0.9643
Epoch 9/10
1428/1428 - 6s - loss: 0.9573 - mse: 0.9573 - val_loss: 0.9610 - val_mse: 0.9610
Epoch 10/10
1428/1428 - 7s - loss: 0.9524 - mse: 0.9524 - val_loss: 0.9580 - val_mse: 0.9580
563/563 - 2s
DataSource(23573293481d4bd4a644fe6ae0a98e6cT)
- 收益率126.89%
- 年化收益率132.26%
- 基准收益率51.66%
- 阿尔法0.8
- 贝塔0.62
- 夏普比率3.36
- 胜率0.64
- 盈亏比1.32
- 收益波动率25.18%
- 信息比率0.12
- 最大回撤13.4%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-f5ccbe429ef449cba15616aa9777a449"}/bigcharts-data-end
[CV 1/1; 2/3] END ..........m8.units=128; score: (test=3.362) total time= 5.8min
[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 10.5min remaining: 0.0s
[CV 1/1; 3/3] START m8.units=256................................................
Epoch 1/10
1428/1428 - 14s - loss: 0.9911 - mse: 0.9911 - val_loss: 0.9842 - val_mse: 0.9842
Epoch 2/10
1428/1428 - 7s - loss: 0.9833 - mse: 0.9833 - val_loss: 0.9793 - val_mse: 0.9793
Epoch 3/10
1428/1428 - 7s - loss: 0.9785 - mse: 0.9785 - val_loss: 0.9750 - val_mse: 0.9750
Epoch 4/10
1428/1428 - 7s - loss: 0.9741 - mse: 0.9741 - val_loss: 0.9700 - val_mse: 0.9700
Epoch 5/10
1428/1428 - 6s - loss: 0.9690 - mse: 0.9690 - val_loss: 0.9670 - val_mse: 0.9670
Epoch 6/10
1428/1428 - 7s - loss: 0.9634 - mse: 0.9634 - val_loss: 0.9631 - val_mse: 0.9631
Epoch 7/10
1428/1428 - 7s - loss: 0.9560 - mse: 0.9560 - val_loss: 0.9593 - val_mse: 0.9593
Epoch 8/10
1428/1428 - 7s - loss: 0.9475 - mse: 0.9475 - val_loss: 0.9550 - val_mse: 0.9550
Epoch 9/10
1428/1428 - 7s - loss: 0.9379 - mse: 0.9379 - val_loss: 0.9507 - val_mse: 0.9507
Epoch 10/10
1428/1428 - 6s - loss: 0.9262 - mse: 0.9262 - val_loss: 0.9452 - val_mse: 0.9452
563/563 - 2s
DataSource(dc734962ca354cc68ba3d8b2d55a1ba6T)
- 收益率106.35%
- 年化收益率110.66%
- 基准收益率51.66%
- 阿尔法0.6
- 贝塔0.66
- 夏普比率3.01
- 胜率0.62
- 盈亏比1.33
- 收益波动率24.85%
- 信息比率0.09
- 最大回撤12.15%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-17c4f28c05514940afc08d82fcb5e4aa"}/bigcharts-data-end
[CV 1/1; 3/3] END ..........m8.units=256; score: (test=3.008) total time=11.2min
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 21.7min remaining: 0.0s
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 21.7min finished
Epoch 1/10
1428/1428 - 15s - loss: 0.9923 - mse: 0.9923 - val_loss: 0.9853 - val_mse: 0.9853
Epoch 2/10
1428/1428 - 7s - loss: 0.9845 - mse: 0.9845 - val_loss: 0.9820 - val_mse: 0.9820
Epoch 3/10
1428/1428 - 7s - loss: 0.9813 - mse: 0.9813 - val_loss: 0.9789 - val_mse: 0.9789
Epoch 4/10
1428/1428 - 7s - loss: 0.9789 - mse: 0.9789 - val_loss: 0.9762 - val_mse: 0.9762
Epoch 5/10
1428/1428 - 7s - loss: 0.9764 - mse: 0.9764 - val_loss: 0.9734 - val_mse: 0.9734
Epoch 6/10
1428/1428 - 7s - loss: 0.9740 - mse: 0.9740 - val_loss: 0.9721 - val_mse: 0.9721
Epoch 7/10
1428/1428 - 7s - loss: 0.9719 - mse: 0.9719 - val_loss: 0.9719 - val_mse: 0.9719
Epoch 8/10
1428/1428 - 7s - loss: 0.9702 - mse: 0.9702 - val_loss: 0.9706 - val_mse: 0.9706
Epoch 9/10
1428/1428 - 6s - loss: 0.9679 - mse: 0.9679 - val_loss: 0.9679 - val_mse: 0.9679
Epoch 10/10
1428/1428 - 6s - loss: 0.9661 - mse: 0.9661 - val_loss: 0.9674 - val_mse: 0.9674
563/563 - 4s
DataSource(4edf625549014d2eb5d574525cb23330T)