复制链接
克隆策略

DeepAlpha短周期因子系列研究:LSTM

回测

  • 策略思想:基于模型的预测结果进行选股,选择当日排名靠前的50只股票买入,卖出其他持有的股票。
  • 调仓周期:日频,每日换仓
  • 资金管理:每只股票最大资金占用50%
  • 手续费:买入0.0003,卖出0.0013
In [9]:
import tensorflow as tf

gpus = tf.config.list_physical_devices('GPU')
if gpus:
    try:
        # Currently, memory growth needs to be the same across GPUs
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)
        
        logical_gpus = tf.config.list_logical_devices('GPU')
        print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
    except RuntimeError as e:
        # Memory growth must be set before GPUs have been initialized
        print(e)
1 Physical GPUs, 1 Logical GPUs

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-2469:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-266:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-298:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-293:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-141:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-266:input_1","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-2431:input_2","from_node_id":"-129:data"},{"to_node_id":"-298:input_1","from_node_id":"-129:data"},{"to_node_id":"-682:inputs","from_node_id":"-160:data"},{"to_node_id":"-4111:inputs","from_node_id":"-160:data"},{"to_node_id":"-231:inputs","from_node_id":"-196:data"},{"to_node_id":"-196:inputs","from_node_id":"-224:data"},{"to_node_id":"-238:inputs","from_node_id":"-231:data"},{"to_node_id":"-682:outputs","from_node_id":"-238:data"},{"to_node_id":"-1098:input_model","from_node_id":"-682:data"},{"to_node_id":"-1540:trained_model","from_node_id":"-1098:data"},{"to_node_id":"-2431:input_1","from_node_id":"-1540:data"},{"to_node_id":"-141:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"-436:input_1","from_node_id":"-243:data"},{"to_node_id":"-1540:input_data","from_node_id":"-251:data"},{"to_node_id":"-1098:training_data","from_node_id":"-436:data_1"},{"to_node_id":"-1098:validation_data","from_node_id":"-436:data_2"},{"to_node_id":"-288:input_data","from_node_id":"-266:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-288:data"},{"to_node_id":"-251:input_data","from_node_id":"-293:data"},{"to_node_id":"-293:input_data","from_node_id":"-298:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-2469:data"},{"to_node_id":"-224:inputs","from_node_id":"-4111:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2011-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2013-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1) - 1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0\nopen_0\nhigh_0\nlow_0 \namount_0\nturn_0 \nreturn_0\n \nclose_1\nopen_1\nhigh_1\nlow_1\nreturn_1\namount_1\nturn_1\n \nclose_2\nopen_2\nhigh_2\nlow_2\namount_2\nturn_2\nreturn_2\n \nclose_3\nopen_3\nhigh_3\nlow_3\namount_3\nturn_3\nreturn_3\n \nclose_4\nopen_4\nhigh_4\nlow_4\namount_4\nturn_4\nreturn_4\n \nmean(close_0, 5)\nmean(low_0, 5)\nmean(open_0, 5)\nmean(high_0, 5)\nmean(turn_0, 5)\nmean(amount_0, 5)\nmean(return_0, 5)\n \nts_max(close_0, 5)\nts_max(low_0, 5)\nts_max(open_0, 5)\nts_max(high_0, 5)\nts_max(turn_0, 5)\nts_max(amount_0, 5)\nts_max(return_0, 5)\n \nts_min(close_0, 5)\nts_min(low_0, 5)\nts_min(open_0, 5)\nts_min(high_0, 5)\nts_min(turn_0, 5)\nts_min(amount_0, 5)\nts_min(return_0, 5) \n \nstd(close_0, 5)\nstd(low_0, 5)\nstd(open_0, 5)\nstd(high_0, 5)\nstd(turn_0, 5)\nstd(amount_0, 5)\nstd(return_0, 5)\n \nts_rank(close_0, 5)\nts_rank(low_0, 5)\nts_rank(open_0, 5)\nts_rank(high_0, 5)\nts_rank(turn_0, 5)\nts_rank(amount_0, 5)\nts_rank(return_0, 5)\n \ndecay_linear(close_0, 5)\ndecay_linear(low_0, 5)\ndecay_linear(open_0, 5)\ndecay_linear(high_0, 5)\ndecay_linear(turn_0, 5)\ndecay_linear(amount_0, 5)\ndecay_linear(return_0, 5)\n \ncorrelation(volume_0, return_0, 5)\ncorrelation(volume_0, high_0, 5)\ncorrelation(volume_0, low_0, 5)\ncorrelation(volume_0, close_0, 5)\ncorrelation(volume_0, open_0, 5)\ncorrelation(volume_0, turn_0, 5)\n \ncorrelation(return_0, high_0, 5)\ncorrelation(return_0, low_0, 5)\ncorrelation(return_0, close_0, 5)\ncorrelation(return_0, open_0, 5)\ncorrelation(return_0, turn_0, 5)\n \ncorrelation(high_0, low_0, 5)\ncorrelation(high_0, close_0, 5)\ncorrelation(high_0, open_0, 5)\ncorrelation(high_0, turn_0, 5)\n \ncorrelation(low_0, close_0, 5)\ncorrelation(low_0, open_0, 5)\ncorrelation(low_0, turn_0, 5)\n \ncorrelation(close_0, open_0, 5)\ncorrelation(close_0, turn_0, 5)\n\ncorrelation(open_0, turn_0, 5)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2014-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2014-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 50\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"5,98","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-196","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"128","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-196"}],"output_ports":[{"name":"data","node_id":"-196"}],"cacheable":false,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-224","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.5","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-224"}],"output_ports":[{"name":"data","node_id":"-224"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.5","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":false,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":false,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-682","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-682"},{"name":"outputs","node_id":"-682"}],"output_ports":[{"name":"data","node_id":"-682"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-1098","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"10","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"from tensorflow.keras.callbacks import EarlyStopping\nbigquant_run=EarlyStopping(monitor='val_mse', min_delta=0.0001, patience=3)","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"0","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-1098"},{"name":"training_data","node_id":"-1098"},{"name":"validation_data","node_id":"-1098"}],"output_ports":[{"name":"data","node_id":"-1098"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-1540","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-1540"},{"name":"input_data","node_id":"-1540"}],"output_ports":[{"name":"data","node_id":"-1540"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-436","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n data = input_1.read()\n x_train, x_val, y_train, y_val = train_test_split(data[\"x\"], data['y'], test_size=0.1)\n data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})\n data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-436"},{"name":"input_2","node_id":"-436"},{"name":"input_3","node_id":"-436"}],"output_ports":[{"name":"data_1","node_id":"-436"},{"name":"data_2","node_id":"-436"},{"name":"data_3","node_id":"-436"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-266","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-266"},{"name":"input_2","node_id":"-266"}],"output_ports":[{"name":"data","node_id":"-266"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-293"},{"name":"features","node_id":"-293"}],"output_ports":[{"name":"data","node_id":"-293"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-298","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-298"},{"name":"input_2","node_id":"-298"}],"output_ports":[{"name":"data","node_id":"-298"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-2469","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2469"},{"name":"input_2","node_id":"-2469"}],"output_ports":[{"name":"data","node_id":"-2469"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-4111","module_id":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","parameters":[{"name":"units","value":"64","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"tanh","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_activation","value":"sigmoid","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_initializer","value":"Orthogonal","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"unit_forget_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"dropout","value":0,"type":"Literal","bound_global_parameter":null},{"name":"recurrent_dropout","value":0,"type":"Literal","bound_global_parameter":null},{"name":"return_sequences","value":"False","type":"Literal","bound_global_parameter":null},{"name":"implementation","value":"2","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-4111"}],"output_ports":[{"name":"data","node_id":"-4111"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-313","module_id":"BigQuantSpace.hyper_parameter_search.hyper_parameter_search-v1","parameters":[{"name":"param_grid_builder","value":"def bigquant_run():\n param_grid = {}\n\n # 在这里设置需要调优的参数备选\n # param_grid['m3.features'] = ['close_1/close_0', 'close_2/close_0\\nclose_3/close_0']\n param_grid['m8.units'] = [64, 128, 256]\n\n return param_grid\n","type":"Literal","bound_global_parameter":null},{"name":"scoring","value":"def bigquant_run(result):\n score = result.get('m19').read_raw_perf()['sharpe'].tail(1)[0]\n\n return {'score': score}\n","type":"Literal","bound_global_parameter":null},{"name":"search_algorithm","value":"网格搜索","type":"Literal","bound_global_parameter":null},{"name":"search_iterations","value":10,"type":"Literal","bound_global_parameter":null},{"name":"random_state","value":"","type":"Literal","bound_global_parameter":null},{"name":"workers","value":1,"type":"Literal","bound_global_parameter":null},{"name":"worker_distributed_run","value":"False","type":"Literal","bound_global_parameter":null},{"name":"worker_silent","value":"False","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-313"},{"name":"input_1","node_id":"-313"},{"name":"input_2","node_id":"-313"},{"name":"input_3","node_id":"-313"}],"output_ports":[{"name":"result","node_id":"-313"}],"cacheable":false,"seq_num":30,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='323,60,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='114,227,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='772,-47,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='291,505,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1148,129,200,200'/><node_position Node='-106' Position='441,156,200,200'/><node_position Node='-113' Position='441,235,200,200'/><node_position Node='-122' Position='1149,284,200,200'/><node_position Node='-129' Position='1156,392,200,200'/><node_position Node='-141' Position='349,1021,200,200'/><node_position Node='-160' Position='-202,35,200,200'/><node_position Node='-196' Position='-203,311,200,200'/><node_position Node='-224' Position='-201.20285034179688,215.20285034179688,200,200'/><node_position Node='-231' Position='-201,395,200,200'/><node_position Node='-238' Position='-195,470,200,200'/><node_position Node='-682' Position='-195,560,200,200'/><node_position Node='-1098' Position='28,745,200,200'/><node_position Node='-1540' Position='221,833,200,200'/><node_position Node='-2431' Position='438,934,200,200'/><node_position Node='-243' Position='294,579,200,200'/><node_position Node='-251' Position='1147,690,200,200'/><node_position Node='-436' Position='282,662,200,200'/><node_position Node='-266' Position='446,303,200,200'/><node_position Node='-288' Position='448,374,200,200'/><node_position Node='-293' Position='1150,600,200,200'/><node_position Node='-298' Position='1155,500,200,200'/><node_position Node='-2469' Position='112,314,200,200'/><node_position Node='-4111' Position='-201,128,200,200'/><node_position Node='-313' Position='-273,848,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [ ]:
    # 本代码由可视化策略环境自动生成 2022年4月25日 10:09
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m10_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        from sklearn.model_selection import train_test_split
        data = input_1.read()
        x_train, x_val, y_train, y_val = train_test_split(data["x"], data['y'], test_size=0.1)
        data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})
        data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m10_post_run_bigquant_run(outputs):
        return outputs
    
    from tensorflow.keras.callbacks import EarlyStopping
    m5_earlystop_bigquant_run=EarlyStopping(monitor='val_mse', min_delta=0.0001, patience=3)
    # 用户的自定义层需要写到字典中,比如
    # {
    #   "MyLayer": MyLayer
    # }
    m5_custom_objects_bigquant_run = {
     
    }
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m24_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        pred_label = input_1.read_pickle()
        df = input_2.read_df()
        df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
        df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
        return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m24_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 50
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.2
        context.options['hold_days'] = 5
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
            # print('rank order for sell %s' % instruments)
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        pass
    
    
    g = T.Graph({
    
        'm1': 'M.instruments.v2',
        'm1.start_date': '2011-01-01',
        'm1.end_date': '2013-12-31',
        'm1.market': 'CN_STOCK_A',
        'm1.instrument_list': '',
        'm1.max_count': 0,
    
        'm2': 'M.advanced_auto_labeler.v2',
        'm2.instruments': T.Graph.OutputPort('m1.data'),
        'm2.label_expr': """# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1) - 1
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        'm2.start_date': '',
        'm2.end_date': '',
        'm2.benchmark': '000300.SHA',
        'm2.drop_na_label': True,
        'm2.cast_label_int': False,
    
        'm12': 'M.standardlize.v9',
        'm12.input_1': T.Graph.OutputPort('m2.data'),
        'm12.standard_func': 'ZScoreNorm',
        'm12.columns_input': 'label',
    
        'm3': 'M.input_features.v1',
        'm3.features': """close_0
    open_0
    high_0
    low_0 
    amount_0
    turn_0 
    return_0
     
    close_1
    open_1
    high_1
    low_1
    return_1
    amount_1
    turn_1
     
    close_2
    open_2
    high_2
    low_2
    amount_2
    turn_2
    return_2
     
    close_3
    open_3
    high_3
    low_3
    amount_3
    turn_3
    return_3
     
    close_4
    open_4
    high_4
    low_4
    amount_4
    turn_4
    return_4
     
    mean(close_0, 5)
    mean(low_0, 5)
    mean(open_0, 5)
    mean(high_0, 5)
    mean(turn_0, 5)
    mean(amount_0, 5)
    mean(return_0, 5)
     
    ts_max(close_0, 5)
    ts_max(low_0, 5)
    ts_max(open_0, 5)
    ts_max(high_0, 5)
    ts_max(turn_0, 5)
    ts_max(amount_0, 5)
    ts_max(return_0, 5)
     
    ts_min(close_0, 5)
    ts_min(low_0, 5)
    ts_min(open_0, 5)
    ts_min(high_0, 5)
    ts_min(turn_0, 5)
    ts_min(amount_0, 5)
    ts_min(return_0, 5) 
     
    std(close_0, 5)
    std(low_0, 5)
    std(open_0, 5)
    std(high_0, 5)
    std(turn_0, 5)
    std(amount_0, 5)
    std(return_0, 5)
     
    ts_rank(close_0, 5)
    ts_rank(low_0, 5)
    ts_rank(open_0, 5)
    ts_rank(high_0, 5)
    ts_rank(turn_0, 5)
    ts_rank(amount_0, 5)
    ts_rank(return_0, 5)
     
    decay_linear(close_0, 5)
    decay_linear(low_0, 5)
    decay_linear(open_0, 5)
    decay_linear(high_0, 5)
    decay_linear(turn_0, 5)
    decay_linear(amount_0, 5)
    decay_linear(return_0, 5)
     
    correlation(volume_0, return_0, 5)
    correlation(volume_0, high_0, 5)
    correlation(volume_0, low_0, 5)
    correlation(volume_0, close_0, 5)
    correlation(volume_0, open_0, 5)
    correlation(volume_0, turn_0, 5)
      
    correlation(return_0, high_0, 5)
    correlation(return_0, low_0, 5)
    correlation(return_0, close_0, 5)
    correlation(return_0, open_0, 5)
    correlation(return_0, turn_0, 5)
     
    correlation(high_0, low_0, 5)
    correlation(high_0, close_0, 5)
    correlation(high_0, open_0, 5)
    correlation(high_0, turn_0, 5)
     
    correlation(low_0, close_0, 5)
    correlation(low_0, open_0, 5)
    correlation(low_0, turn_0, 5)
     
    correlation(close_0, open_0, 5)
    correlation(close_0, turn_0, 5)
    
    correlation(open_0, turn_0, 5)""",
    
        'm15': 'M.general_feature_extractor.v7',
        'm15.instruments': T.Graph.OutputPort('m1.data'),
        'm15.features': T.Graph.OutputPort('m3.data'),
        'm15.start_date': '',
        'm15.end_date': '',
        'm15.before_start_days': 10,
    
        'm16': 'M.derived_feature_extractor.v3',
        'm16.input_data': T.Graph.OutputPort('m15.data'),
        'm16.features': T.Graph.OutputPort('m3.data'),
        'm16.date_col': 'date',
        'm16.instrument_col': 'instrument',
        'm16.drop_na': True,
        'm16.remove_extra_columns': False,
    
        'm28': 'M.standardlize.v8',
        'm28.input_1': T.Graph.OutputPort('m16.data'),
        'm28.input_2': T.Graph.OutputPort('m3.data'),
        'm28.columns_input': '[]',
    
        'm13': 'M.fillnan.v1',
        'm13.input_data': T.Graph.OutputPort('m28.data'),
        'm13.features': T.Graph.OutputPort('m3.data'),
        'm13.fill_value': '0.0',
    
        'm7': 'M.join.v3',
        'm7.data1': T.Graph.OutputPort('m12.data'),
        'm7.data2': T.Graph.OutputPort('m13.data'),
        'm7.on': 'date,instrument',
        'm7.how': 'inner',
        'm7.sort': True,
    
        'm26': 'M.dl_convert_to_bin.v2',
        'm26.input_data': T.Graph.OutputPort('m7.data'),
        'm26.features': T.Graph.OutputPort('m3.data'),
        'm26.window_size': 5,
        'm26.feature_clip': 3,
        'm26.flatten': False,
        'm26.window_along_col': 'instrument',
    
        'm10': 'M.cached.v3',
        'm10.input_1': T.Graph.OutputPort('m26.data'),
        'm10.run': m10_run_bigquant_run,
        'm10.post_run': m10_post_run_bigquant_run,
        'm10.input_ports': '',
        'm10.params': '{}',
        'm10.output_ports': '',
    
        'm9': 'M.instruments.v2',
        'm9.start_date': T.live_run_param('trading_date', '2014-01-01'),
        'm9.end_date': T.live_run_param('trading_date', '2014-12-31'),
        'm9.market': 'CN_STOCK_A',
        'm9.instrument_list': '',
        'm9.max_count': 0,
    
        'm17': 'M.general_feature_extractor.v7',
        'm17.instruments': T.Graph.OutputPort('m9.data'),
        'm17.features': T.Graph.OutputPort('m3.data'),
        'm17.start_date': '',
        'm17.end_date': '',
        'm17.before_start_days': 10,
    
        'm18': 'M.derived_feature_extractor.v3',
        'm18.input_data': T.Graph.OutputPort('m17.data'),
        'm18.features': T.Graph.OutputPort('m3.data'),
        'm18.date_col': 'date',
        'm18.instrument_col': 'instrument',
        'm18.drop_na': True,
        'm18.remove_extra_columns': False,
    
        'm25': 'M.standardlize.v8',
        'm25.input_1': T.Graph.OutputPort('m18.data'),
        'm25.input_2': T.Graph.OutputPort('m3.data'),
        'm25.columns_input': '[]',
    
        'm14': 'M.fillnan.v1',
        'm14.input_data': T.Graph.OutputPort('m25.data'),
        'm14.features': T.Graph.OutputPort('m3.data'),
        'm14.fill_value': '0.0',
    
        'm27': 'M.dl_convert_to_bin.v2',
        'm27.input_data': T.Graph.OutputPort('m14.data'),
        'm27.features': T.Graph.OutputPort('m3.data'),
        'm27.window_size': 5,
        'm27.feature_clip': 3,
        'm27.flatten': False,
        'm27.window_along_col': 'instrument',
    
        'm6': 'M.dl_layer_input.v1',
        'm6.shape': '5,98',
        'm6.batch_shape': '',
        'm6.dtype': 'float32',
        'm6.sparse': False,
        'm6.name': '',
    
        'm8': 'M.dl_layer_lstm.v1',
        'm8.inputs': T.Graph.OutputPort('m6.data'),
        'm8.units': 64,
        'm8.activation': 'tanh',
        'm8.recurrent_activation': 'sigmoid',
        'm8.use_bias': True,
        'm8.kernel_initializer': 'glorot_uniform',
        'm8.recurrent_initializer': 'Orthogonal',
        'm8.bias_initializer': 'Zeros',
        'm8.unit_forget_bias': True,
        'm8.kernel_regularizer': 'None',
        'm8.kernel_regularizer_l1': 0,
        'm8.kernel_regularizer_l2': 0,
        'm8.recurrent_regularizer': 'None',
        'm8.recurrent_regularizer_l1': 0,
        'm8.recurrent_regularizer_l2': 0,
        'm8.bias_regularizer': 'None',
        'm8.bias_regularizer_l1': 0,
        'm8.bias_regularizer_l2': 0,
        'm8.activity_regularizer': 'None',
        'm8.activity_regularizer_l1': 0,
        'm8.activity_regularizer_l2': 0,
        'm8.kernel_constraint': 'None',
        'm8.recurrent_constraint': 'None',
        'm8.bias_constraint': 'None',
        'm8.dropout': 0,
        'm8.recurrent_dropout': 0,
        'm8.return_sequences': False,
        'm8.implementation': '2',
        'm8.name': '',
    
        'm21': 'M.dl_layer_dropout.v1',
        'm21.inputs': T.Graph.OutputPort('m8.data'),
        'm21.rate': 0.5,
        'm21.noise_shape': '',
        'm21.name': '',
    
        'm20': 'M.dl_layer_dense.v1',
        'm20.inputs': T.Graph.OutputPort('m21.data'),
        'm20.units': 128,
        'm20.activation': 'relu',
        'm20.use_bias': True,
        'm20.kernel_initializer': 'glorot_uniform',
        'm20.bias_initializer': 'Zeros',
        'm20.kernel_regularizer': 'None',
        'm20.kernel_regularizer_l1': 0,
        'm20.kernel_regularizer_l2': 0,
        'm20.bias_regularizer': 'None',
        'm20.bias_regularizer_l1': 0,
        'm20.bias_regularizer_l2': 0,
        'm20.activity_regularizer': 'None',
        'm20.activity_regularizer_l1': 0,
        'm20.activity_regularizer_l2': 0,
        'm20.kernel_constraint': 'None',
        'm20.bias_constraint': 'None',
        'm20.name': '',
    
        'm22': 'M.dl_layer_dropout.v1',
        'm22.inputs': T.Graph.OutputPort('m20.data'),
        'm22.rate': 0.5,
        'm22.noise_shape': '',
        'm22.name': '',
    
        'm23': 'M.dl_layer_dense.v1',
        'm23.inputs': T.Graph.OutputPort('m22.data'),
        'm23.units': 1,
        'm23.activation': 'linear',
        'm23.use_bias': True,
        'm23.kernel_initializer': 'glorot_uniform',
        'm23.bias_initializer': 'Zeros',
        'm23.kernel_regularizer': 'None',
        'm23.kernel_regularizer_l1': 0,
        'm23.kernel_regularizer_l2': 0,
        'm23.bias_regularizer': 'None',
        'm23.bias_regularizer_l1': 0,
        'm23.bias_regularizer_l2': 0,
        'm23.activity_regularizer': 'None',
        'm23.activity_regularizer_l1': 0,
        'm23.activity_regularizer_l2': 0,
        'm23.kernel_constraint': 'None',
        'm23.bias_constraint': 'None',
        'm23.name': '',
    
        'm4': 'M.dl_model_init.v1',
        'm4.inputs': T.Graph.OutputPort('m6.data'),
        'm4.outputs': T.Graph.OutputPort('m23.data'),
    
        'm5': 'M.dl_model_train.v1',
        'm5.input_model': T.Graph.OutputPort('m4.data'),
        'm5.training_data': T.Graph.OutputPort('m10.data_1'),
        'm5.validation_data': T.Graph.OutputPort('m10.data_2'),
        'm5.optimizer': 'Adam',
        'm5.loss': 'mean_squared_error',
        'm5.metrics': 'mse',
        'm5.batch_size': 1024,
        'm5.epochs': 10,
        'm5.earlystop': m5_earlystop_bigquant_run,
        'm5.custom_objects': m5_custom_objects_bigquant_run,
        'm5.n_gpus': 0,
        'm5.verbose': '2:每个epoch输出一行记录',
    
        'm11': 'M.dl_model_predict.v1',
        'm11.trained_model': T.Graph.OutputPort('m5.data'),
        'm11.input_data': T.Graph.OutputPort('m27.data'),
        'm11.batch_size': 1024,
        'm11.n_gpus': 0,
        'm11.verbose': '2:每个epoch输出一行记录',
    
        'm24': 'M.cached.v3',
        'm24.input_1': T.Graph.OutputPort('m11.data'),
        'm24.input_2': T.Graph.OutputPort('m18.data'),
        'm24.run': m24_run_bigquant_run,
        'm24.post_run': m24_post_run_bigquant_run,
        'm24.input_ports': '',
        'm24.params': '{}',
        'm24.output_ports': '',
    
        'm19': 'M.trade.v4',
        'm19.instruments': T.Graph.OutputPort('m9.data'),
        'm19.options_data': T.Graph.OutputPort('m24.data_1'),
        'm19.start_date': '',
        'm19.end_date': '',
        'm19.initialize': m19_initialize_bigquant_run,
        'm19.handle_data': m19_handle_data_bigquant_run,
        'm19.prepare': m19_prepare_bigquant_run,
        'm19.volume_limit': 0.025,
        'm19.order_price_field_buy': 'open',
        'm19.order_price_field_sell': 'close',
        'm19.capital_base': 1000000,
        'm19.auto_cancel_non_tradable_orders': True,
        'm19.data_frequency': 'daily',
        'm19.price_type': '后复权',
        'm19.product_type': '股票',
        'm19.plot_charts': True,
        'm19.backtest_only': False,
        'm19.benchmark': '000300.SHA',
    })
    
    # g.run({})
    
    
    def m30_param_grid_builder_bigquant_run():
        param_grid = {}
    
        # 在这里设置需要调优的参数备选
        # param_grid['m3.features'] = ['close_1/close_0', 'close_2/close_0\nclose_3/close_0']
        param_grid['m8.units'] = [64, 128, 256]
    
        return param_grid
    
    def m30_scoring_bigquant_run(result):
        score = result.get('m19').read_raw_perf()['sharpe'].tail(1)[0]
    
        return {'score': score}
    
    
    m30 = M.hyper_parameter_search.v1(
        param_grid_builder=m30_param_grid_builder_bigquant_run,
        scoring=m30_scoring_bigquant_run,
        search_algorithm='网格搜索',
        search_iterations=10,
        workers=1,
        worker_distributed_run=False,
        worker_silent=False,
        run_now=True,
        bq_graph=g
    )
    
    Fitting 1 folds for each of 3 candidates, totalling 3 fits
    [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
    [CV 1/1; 1/3] START m8.units=64.................................................
    
    Epoch 1/10
    1428/1428 - 12s - loss: 0.9923 - mse: 0.9923 - val_loss: 0.9853 - val_mse: 0.9853
    Epoch 2/10
    1428/1428 - 6s - loss: 0.9846 - mse: 0.9846 - val_loss: 0.9817 - val_mse: 0.9817
    Epoch 3/10
    1428/1428 - 6s - loss: 0.9813 - mse: 0.9813 - val_loss: 0.9788 - val_mse: 0.9788
    Epoch 4/10
    1428/1428 - 6s - loss: 0.9788 - mse: 0.9788 - val_loss: 0.9759 - val_mse: 0.9759
    Epoch 5/10
    1428/1428 - 6s - loss: 0.9764 - mse: 0.9764 - val_loss: 0.9733 - val_mse: 0.9733
    Epoch 6/10
    1428/1428 - 6s - loss: 0.9740 - mse: 0.9740 - val_loss: 0.9724 - val_mse: 0.9724
    Epoch 7/10
    1428/1428 - 6s - loss: 0.9719 - mse: 0.9719 - val_loss: 0.9714 - val_mse: 0.9714
    Epoch 8/10
    1428/1428 - 6s - loss: 0.9702 - mse: 0.9702 - val_loss: 0.9711 - val_mse: 0.9711
    Epoch 9/10
    1428/1428 - 6s - loss: 0.9679 - mse: 0.9679 - val_loss: 0.9680 - val_mse: 0.9680
    Epoch 10/10
    1428/1428 - 6s - loss: 0.9662 - mse: 0.9662 - val_loss: 0.9680 - val_mse: 0.9680
    
    563/563 - 2s
    DataSource(c1088728ccce411f924b1b4ee5963c71T)
    
    • 收益率146.06%
    • 年化收益率152.47%
    • 基准收益率51.66%
    • 阿尔法0.95
    • 贝塔0.63
    • 夏普比率3.61
    • 胜率0.65
    • 盈亏比1.28
    • 收益波动率25.83%
    • 信息比率0.14
    • 最大回撤12.6%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-151724d558764c06aacaa3a92b91cc24"}/bigcharts-data-end
    [CV 1/1; 1/3] END ...........m8.units=64; score: (test=3.608) total time= 4.7min
    [Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:  4.7min remaining:    0.0s
    [CV 1/1; 2/3] START m8.units=128................................................
    
    Epoch 1/10
    1428/1428 - 12s - loss: 0.9919 - mse: 0.9919 - val_loss: 0.9842 - val_mse: 0.9842
    Epoch 2/10
    1428/1428 - 6s - loss: 0.9840 - mse: 0.9840 - val_loss: 0.9803 - val_mse: 0.9803
    Epoch 3/10
    1428/1428 - 6s - loss: 0.9797 - mse: 0.9797 - val_loss: 0.9758 - val_mse: 0.9758
    Epoch 4/10
    1428/1428 - 6s - loss: 0.9760 - mse: 0.9760 - val_loss: 0.9730 - val_mse: 0.9730
    Epoch 5/10
    1428/1428 - 6s - loss: 0.9726 - mse: 0.9726 - val_loss: 0.9699 - val_mse: 0.9699
    Epoch 6/10
    1428/1428 - 6s - loss: 0.9688 - mse: 0.9688 - val_loss: 0.9677 - val_mse: 0.9677
    Epoch 7/10
    1428/1428 - 6s - loss: 0.9653 - mse: 0.9653 - val_loss: 0.9662 - val_mse: 0.9662
    Epoch 8/10
    1428/1428 - 7s - loss: 0.9613 - mse: 0.9613 - val_loss: 0.9643 - val_mse: 0.9643
    Epoch 9/10
    1428/1428 - 6s - loss: 0.9573 - mse: 0.9573 - val_loss: 0.9610 - val_mse: 0.9610
    Epoch 10/10
    1428/1428 - 7s - loss: 0.9524 - mse: 0.9524 - val_loss: 0.9580 - val_mse: 0.9580
    
    563/563 - 2s
    DataSource(23573293481d4bd4a644fe6ae0a98e6cT)
    
    • 收益率126.89%
    • 年化收益率132.26%
    • 基准收益率51.66%
    • 阿尔法0.8
    • 贝塔0.62
    • 夏普比率3.36
    • 胜率0.64
    • 盈亏比1.32
    • 收益波动率25.18%
    • 信息比率0.12
    • 最大回撤13.4%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-f5ccbe429ef449cba15616aa9777a449"}/bigcharts-data-end
    [CV 1/1; 2/3] END ..........m8.units=128; score: (test=3.362) total time= 5.8min
    [Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed: 10.5min remaining:    0.0s
    [CV 1/1; 3/3] START m8.units=256................................................
    
    Epoch 1/10
    1428/1428 - 14s - loss: 0.9911 - mse: 0.9911 - val_loss: 0.9842 - val_mse: 0.9842
    Epoch 2/10
    1428/1428 - 7s - loss: 0.9833 - mse: 0.9833 - val_loss: 0.9793 - val_mse: 0.9793
    Epoch 3/10
    1428/1428 - 7s - loss: 0.9785 - mse: 0.9785 - val_loss: 0.9750 - val_mse: 0.9750
    Epoch 4/10
    1428/1428 - 7s - loss: 0.9741 - mse: 0.9741 - val_loss: 0.9700 - val_mse: 0.9700
    Epoch 5/10
    1428/1428 - 6s - loss: 0.9690 - mse: 0.9690 - val_loss: 0.9670 - val_mse: 0.9670
    Epoch 6/10
    1428/1428 - 7s - loss: 0.9634 - mse: 0.9634 - val_loss: 0.9631 - val_mse: 0.9631
    Epoch 7/10
    1428/1428 - 7s - loss: 0.9560 - mse: 0.9560 - val_loss: 0.9593 - val_mse: 0.9593
    Epoch 8/10
    1428/1428 - 7s - loss: 0.9475 - mse: 0.9475 - val_loss: 0.9550 - val_mse: 0.9550
    Epoch 9/10
    1428/1428 - 7s - loss: 0.9379 - mse: 0.9379 - val_loss: 0.9507 - val_mse: 0.9507
    Epoch 10/10
    1428/1428 - 6s - loss: 0.9262 - mse: 0.9262 - val_loss: 0.9452 - val_mse: 0.9452
    
    563/563 - 2s
    DataSource(dc734962ca354cc68ba3d8b2d55a1ba6T)
    
    • 收益率106.35%
    • 年化收益率110.66%
    • 基准收益率51.66%
    • 阿尔法0.6
    • 贝塔0.66
    • 夏普比率3.01
    • 胜率0.62
    • 盈亏比1.33
    • 收益波动率24.85%
    • 信息比率0.09
    • 最大回撤12.15%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-17c4f28c05514940afc08d82fcb5e4aa"}/bigcharts-data-end
    [CV 1/1; 3/3] END ..........m8.units=256; score: (test=3.008) total time=11.2min
    [Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed: 21.7min remaining:    0.0s
    [Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed: 21.7min finished
    
    Epoch 1/10
    1428/1428 - 15s - loss: 0.9923 - mse: 0.9923 - val_loss: 0.9853 - val_mse: 0.9853
    Epoch 2/10
    1428/1428 - 7s - loss: 0.9845 - mse: 0.9845 - val_loss: 0.9820 - val_mse: 0.9820
    Epoch 3/10
    1428/1428 - 7s - loss: 0.9813 - mse: 0.9813 - val_loss: 0.9789 - val_mse: 0.9789
    Epoch 4/10
    1428/1428 - 7s - loss: 0.9789 - mse: 0.9789 - val_loss: 0.9762 - val_mse: 0.9762
    Epoch 5/10
    1428/1428 - 7s - loss: 0.9764 - mse: 0.9764 - val_loss: 0.9734 - val_mse: 0.9734
    Epoch 6/10
    1428/1428 - 7s - loss: 0.9740 - mse: 0.9740 - val_loss: 0.9721 - val_mse: 0.9721
    Epoch 7/10
    1428/1428 - 7s - loss: 0.9719 - mse: 0.9719 - val_loss: 0.9719 - val_mse: 0.9719
    Epoch 8/10
    1428/1428 - 7s - loss: 0.9702 - mse: 0.9702 - val_loss: 0.9706 - val_mse: 0.9706
    Epoch 9/10
    1428/1428 - 6s - loss: 0.9679 - mse: 0.9679 - val_loss: 0.9679 - val_mse: 0.9679
    Epoch 10/10
    1428/1428 - 6s - loss: 0.9661 - mse: 0.9661 - val_loss: 0.9674 - val_mse: 0.9674
    
    563/563 - 4s
    DataSource(4edf625549014d2eb5d574525cb23330T)