{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-318:features_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-10302:input_data","from_node_id":"-238:data"},{"to_node_id":"-231:features","from_node_id":"-318:data"},{"to_node_id":"-238:features","from_node_id":"-318:data"},{"to_node_id":"-86:input_data","from_node_id":"-10302:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-11-02","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"90","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"400","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n today = data.current_dt.strftime('%Y-%m-%d')\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == today]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n \n #--------------------------START:持有固定天数卖出(不含建仓期)-----------\n current_stopdays_stock = []\n positions_lastdate = {e.symbol:p.last_sale_date for e,p in context.portfolio.positions.items()}\n # 不是建仓期(在前hold_days属于建仓期)\n if not is_staging:\n for instrument in positions.keys():\n #使用交易天数\n dt = pd.to_datetime(D.trading_days(end_date = today).iloc[-context.options['hold_days']].values[0])\n if pd.to_datetime(positions_lastdate[instrument].strftime('%Y-%m-%d')) <= dt and data.can_trade(context.symbol(instrument)):\n context.order_target_percent(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n #------------------------- END:持有固定天数卖出-----------------------\n \n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-318","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# _PRS250=(close_0-shift(close_0,250))/shift(close_0,250)\n# PRS250=rank(_PRS250)\n# _PRS120=(close_0-shift(close_0,120))/shift(close_0,120)\n# PRS120=rank(_PRS120)\n# t1=where(PRS250<0.1,1,0)\n# t2=where(PRS120<0.1,1,0)\n# flag=where(max(t1,t2)==1,1,0)\n\nPRS10=rank(return_10)\nPRS20=rank(return_20)\nPRS60=rank(return_60)\n\nt1=where(PRS10<0.1,1,0)\nt2=where(PRS20<0.1,1,0)\nt3=where(PRS60<0.1,1,0)\nflag=where(max(t1,t2,t3)==1,1,0)\n\nrank_fs_roe_ttm_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-318"}],"output_ports":[{"name":"data","node_id":"-318"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-10302","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"flag!=1 and rank_fs_roe_ttm_0>0.1","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-10302"}],"output_ports":[{"name":"data","node_id":"-10302"},{"name":"left_data","node_id":"-10302"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='190,8.204463958740234,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='-25,170,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='570,-58,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='698,495,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='285,338,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='801,579,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1137,-18,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='379,432,200,200'/><node_position Node='-86' Position='1081.591064453125,412.6133728027344,200,200'/><node_position Node='-215' Position='357,139,200,200'/><node_position Node='-222' Position='374,222,200,200'/><node_position Node='-231' Position='1144,142,200,200'/><node_position Node='-238' Position='1112.2044677734375,255.97769165039062,200,200'/><node_position Node='-250' Position='712,671,200,200'/><node_position Node='-318' Position='805.639404296875,62.613380432128906,200,200'/><node_position Node='-10302' Position='1101.18212890625,331.5910949707031,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-11-03 15:19:09.789098] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-11-03 15:19:09.811876] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:09.814850] INFO: moduleinvoker: instruments.v2 运行完成[0.025757s].
[2022-11-03 15:19:09.830532] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-11-03 15:19:09.851952] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:10.067077] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.236542s].
[2022-11-03 15:19:10.074398] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-11-03 15:19:10.147339] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:10.149897] INFO: moduleinvoker: input_features.v1 运行完成[0.075495s].
[2022-11-03 15:19:10.155690] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-11-03 15:19:10.166944] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:10.169021] INFO: moduleinvoker: input_features.v1 运行完成[0.013336s].
[2022-11-03 15:19:10.190927] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-11-03 15:19:10.201810] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:10.203742] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012841s].
[2022-11-03 15:19:10.213576] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-11-03 15:19:10.227773] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:10.229715] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.016121s].
[2022-11-03 15:19:10.242178] INFO: moduleinvoker: join.v3 开始运行..
[2022-11-03 15:19:10.271395] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:10.273697] INFO: moduleinvoker: join.v3 运行完成[0.031518s].
[2022-11-03 15:19:10.287962] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-11-03 15:19:10.302769] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:10.305839] INFO: moduleinvoker: dropnan.v1 运行完成[0.017876s].
[2022-11-03 15:19:10.318575] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-11-03 15:19:10.344057] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:10.586917] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.268344s].
[2022-11-03 15:19:10.608619] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-11-03 15:19:10.618907] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:10.620668] INFO: moduleinvoker: instruments.v2 运行完成[0.012051s].
[2022-11-03 15:19:10.640462] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-11-03 15:19:10.656434] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:10.658373] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.017938s].
[2022-11-03 15:19:10.666974] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-11-03 15:19:10.675826] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:10.677617] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010644s].
[2022-11-03 15:19:10.691213] INFO: moduleinvoker: filter.v3 开始运行..
[2022-11-03 15:19:10.698644] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:10.700889] INFO: moduleinvoker: filter.v3 运行完成[0.009679s].
[2022-11-03 15:19:10.712108] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-11-03 15:19:10.720266] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:10.722017] INFO: moduleinvoker: dropnan.v1 运行完成[0.009907s].
[2022-11-03 15:19:10.735324] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-11-03 15:19:11.993155] INFO: StockRanker预测: /y_2020 ..
[2022-11-03 15:19:13.511487] INFO: StockRanker预测: /y_2021 ..
[2022-11-03 15:19:15.343675] INFO: StockRanker预测: /y_2022 ..
[2022-11-03 15:19:17.634310] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[6.898975s].
[2022-11-03 15:19:21.634554] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-11-03 15:19:21.642654] INFO: backtest: biglearning backtest:V8.6.3
[2022-11-03 15:19:21.644663] INFO: backtest: product_type:stock by specified
[2022-11-03 15:19:21.758359] INFO: moduleinvoker: cached.v2 开始运行..
[2022-11-03 15:19:21.769445] INFO: moduleinvoker: 命中缓存
[2022-11-03 15:19:21.772215] INFO: moduleinvoker: cached.v2 运行完成[0.01386s].
[2022-11-03 15:19:32.761691] INFO: backtest: algo history_data=DataSource(e69ff7cd8ebb463f87b0b9f0aa0b4d3aT)
[2022-11-03 15:19:32.764057] INFO: algo: TradingAlgorithm V1.8.8
[2022-11-03 15:19:37.642910] INFO: algo: trading transform...
[2022-11-03 15:20:29.831298] INFO: algo: handle_splits get splits [dt:2022-05-13 00:00:00+00:00] [asset:Equity(1536 [300876.SZA]), ratio:0.9868475794792175]
[2022-11-03 15:20:29.833260] INFO: Position: position stock handle split[sid:1536, orig_amount:3600, new_amount:3647.0, orig_cost:22.5801365920691, new_cost:22.2832, ratio:0.9868475794792175, last_sale_price:22.509994506835938]
[2022-11-03 15:20:29.834868] INFO: Position: after split: PositionStock(asset:Equity(1536 [300876.SZA]), amount:3647.0, cost_basis:22.2832, last_sale_price:22.810001373291016)
[2022-11-03 15:20:29.836166] INFO: Position: returning cash: 22.0545
[2022-11-03 15:20:41.939230] INFO: algo: handle_splits get splits [dt:2022-06-08 00:00:00+00:00] [asset:Equity(5622 [300756.SZA]), ratio:0.7127549648284912]
[2022-11-03 15:20:41.941429] INFO: Position: position stock handle split[sid:5622, orig_amount:2300, new_amount:3226.0, orig_cost:19.160011695044304, new_cost:13.6564, ratio:0.7127549648284912, last_sale_price:13.96999740600586]
[2022-11-03 15:20:41.943392] INFO: Position: after split: PositionStock(asset:Equity(5622 [300756.SZA]), amount:3226.0, cost_basis:13.6564, last_sale_price:19.600000381469727)
[2022-11-03 15:20:41.944899] INFO: Position: returning cash: 12.7887
[2022-11-03 15:20:53.524252] INFO: algo: handle_splits get splits [dt:2022-07-14 00:00:00+00:00] [asset:Equity(949 [603900.SHA]), ratio:0.9943183064460754]
[2022-11-03 15:20:53.526169] INFO: Position: position stock handle split[sid:949, orig_amount:7000, new_amount:7039.0, orig_cost:7.06001617839667, new_cost:7.0199, ratio:0.9943183064460754, last_sale_price:7.000001430511475]
[2022-11-03 15:20:53.527662] INFO: Position: after split: PositionStock(asset:Equity(949 [603900.SHA]), amount:7039.0, cost_basis:7.0199, last_sale_price:7.0400004386901855)
[2022-11-03 15:20:53.528864] INFO: Position: returning cash: 6.9938
[2022-11-03 15:20:53.909684] INFO: algo: handle_splits get splits [dt:2022-07-15 00:00:00+00:00] [asset:Equity(2077 [002193.SZA]), ratio:0.9983843564987183]
[2022-11-03 15:20:53.912986] INFO: Position: position stock handle split[sid:2077, orig_amount:6400, new_amount:6410.0, orig_cost:6.150000578416294, new_cost:6.1401, ratio:0.9983843564987183, last_sale_price:6.179999351501465]
[2022-11-03 15:20:53.915928] INFO: Position: after split: PositionStock(asset:Equity(2077 [002193.SZA]), amount:6410.0, cost_basis:6.1401, last_sale_price:6.190000057220459)
[2022-11-03 15:20:53.917911] INFO: Position: returning cash: 2.2053
[2022-11-03 15:21:34.894653] INFO: Performance: Simulated 200 trading days out of 200.
[2022-11-03 15:21:34.897042] INFO: Performance: first open: 2022-01-04 09:30:00+00:00
[2022-11-03 15:21:34.899401] INFO: Performance: last close: 2022-11-02 15:00:00+00:00
[2022-11-03 15:21:38.677472] INFO: moduleinvoker: backtest.v8 运行完成[137.042937s].
[2022-11-03 15:21:38.680456] INFO: moduleinvoker: trade.v4 运行完成[141.035917s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-bb1b7061dfba425e91cfb677009b31f9"}/bigcharts-data-end
- 收益率31.36%
- 年化收益率41.01%
- 基准收益率-25.56%
- 阿尔法0.91
- 贝塔0.78
- 夏普比率1.27
- 胜率0.51
- 盈亏比1.27
- 收益波动率27.73%
- 信息比率0.2
- 最大回撤17.24%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-c579c02bfab84a7da872e1def36e17a7"}/bigcharts-data-end