{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-160:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-168:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-160:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"-160:predict_ds","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-2827:input_1","from_node_id":"-238:data"},{"to_node_id":"-250:options_data","from_node_id":"-160:predictions"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"-168:data_1"},{"to_node_id":"-86:input_data","from_node_id":"-2827:data_1"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\ncorrelation(return_0, avg_amount_5, 5)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.xgboost.xgboost-v1","parameters":[{"name":"num_boost_round","value":30,"type":"Literal","bound_global_parameter":null},{"name":"objective","value":"排序(pairwise)","type":"Literal","bound_global_parameter":null},{"name":"booster","value":"gbtree","type":"Literal","bound_global_parameter":null},{"name":"max_depth","value":6,"type":"Literal","bound_global_parameter":null},{"name":"key_cols","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"group_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"nthread","value":"1","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"other_train_parameters","value":"{'seed': 1, 'tree_method': 'approx'}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-160"},{"name":"features","node_id":"-160"},{"name":"model","node_id":"-160"},{"name":"predict_ds","node_id":"-160"}],"output_ports":[{"name":"output_model","node_id":"-160"},{"name":"predictions","node_id":"-160"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-168","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n df = input_1.read()\n \n # 数据格式统一:float\n col_names = list(df.columns)\n col_names.remove('instrument')\n col_names.remove('date')\n df.loc[:,col_names] = df.loc[:,col_names].astype(float)\n \n # 处理数据:inf_\n import numpy as np\n df.loc[:,col_names] = df.loc[:,col_names].where(~np.isinf(df.loc[:,col_names].values),other=np.nan)\n data_1 = DataSource.write_df(df)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-168"},{"name":"input_2","node_id":"-168"},{"name":"input_3","node_id":"-168"}],"output_ports":[{"name":"data_1","node_id":"-168"},{"name":"data_2","node_id":"-168"},{"name":"data_3","node_id":"-168"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-2827","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n df = input_1.read()\n \n # 数据格式统一:float\n col_names = list(df.columns)\n col_names.remove('instrument')\n col_names.remove('date')\n df.loc[:,col_names] = df.loc[:,col_names].astype(float)\n \n # 处理数据:inf_\n import numpy as np\n df.loc[:,col_names] = df.loc[:,col_names].where(~np.isinf(df.loc[:,col_names].values),other=np.nan)\n data_1 = DataSource.write_df(df)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2827"},{"name":"input_2","node_id":"-2827"},{"name":"input_3","node_id":"-2827"}],"output_ports":[{"name":"data_1","node_id":"-2827"},{"name":"data_2","node_id":"-2827"},{"name":"data_3","node_id":"-2827"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='416.0350341796875,568.18603515625,200,200'/><node_position Node='-86' Position='983,531,200,200'/><node_position Node='-215' Position='381,188,200,200'/><node_position Node='-222' Position='385,280,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='678,801,200,200'/><node_position Node='-160' Position='608,677,200,200'/><node_position Node='-168' Position='351.3693084716797,472.8785095214844,200,200'/><node_position Node='-2827' Position='1075,428,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-08-09 14:12:50.501447] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-08-09 14:12:50.509374] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.510760] INFO: moduleinvoker: instruments.v2 运行完成[0.009318s].
[2022-08-09 14:12:50.521226] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-08-09 14:12:50.528620] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.530091] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.008863s].
[2022-08-09 14:12:50.534433] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-08-09 14:12:50.539798] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.541192] INFO: moduleinvoker: input_features.v1 运行完成[0.006757s].
[2022-08-09 14:12:50.553900] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-08-09 14:12:50.560868] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.562463] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.008593s].
[2022-08-09 14:12:50.580807] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-08-09 14:12:50.592225] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.594052] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.013247s].
[2022-08-09 14:12:50.603762] INFO: moduleinvoker: join.v3 开始运行..
[2022-08-09 14:12:50.611513] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.612991] INFO: moduleinvoker: join.v3 运行完成[0.009237s].
[2022-08-09 14:12:50.629037] INFO: moduleinvoker: cached.v3 开始运行..
[2022-08-09 14:12:50.636708] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.639170] INFO: moduleinvoker: cached.v3 运行完成[0.010145s].
[2022-08-09 14:12:50.649308] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-08-09 14:12:50.654867] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.656488] INFO: moduleinvoker: dropnan.v1 运行完成[0.007181s].
[2022-08-09 14:12:50.662309] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-08-09 14:12:50.671253] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.674132] INFO: moduleinvoker: instruments.v2 运行完成[0.011798s].
[2022-08-09 14:12:50.691530] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-08-09 14:12:50.707640] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.710244] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.018719s].
[2022-08-09 14:12:50.721774] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-08-09 14:12:50.728228] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.729872] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.008103s].
[2022-08-09 14:12:50.746423] INFO: moduleinvoker: cached.v3 开始运行..
[2022-08-09 14:12:50.753983] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.756185] INFO: moduleinvoker: cached.v3 运行完成[0.009777s].
[2022-08-09 14:12:50.769718] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-08-09 14:12:50.777533] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.780163] INFO: moduleinvoker: dropnan.v1 运行完成[0.010445s].
[2022-08-09 14:12:50.790867] INFO: moduleinvoker: xgboost.v1 开始运行..
[2022-08-09 14:12:50.799179] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:50.801813] INFO: moduleinvoker: xgboost.v1 运行完成[0.010953s].
[2022-08-09 14:12:54.447319] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-08-09 14:12:54.464751] INFO: moduleinvoker: 命中缓存
[2022-08-09 14:12:56.176690] INFO: moduleinvoker: backtest.v8 运行完成[1.729359s].
[2022-08-09 14:12:56.180422] INFO: moduleinvoker: trade.v4 运行完成[5.370574s].
- 收益率24.28%
- 年化收益率25.28%
- 基准收益率-5.2%
- 阿尔法0.28
- 贝塔0.46
- 夏普比率1.13
- 胜率0.5
- 盈亏比1.24
- 收益波动率18.87%
- 信息比率0.09
- 最大回撤12.09%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-218b4080b5c64ccfb18172c7020f6e04"}/bigcharts-data-end