{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-5962:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-5456:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-168:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-1205:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-512:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-5456:predict_ds","from_node_id":"-86:data"},{"to_node_id":"-2034:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-1228:data2","from_node_id":"-238:data"},{"to_node_id":"-86:input_data","from_node_id":"-144:data_1"},{"to_node_id":"-5456:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"-168:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-5962:data"},{"to_node_id":"-1222:input_1","from_node_id":"-1205:data"},{"to_node_id":"-1228:data1","from_node_id":"-1222:data"},{"to_node_id":"-144:input_1","from_node_id":"-1228:data"},{"to_node_id":"-512:options_data","from_node_id":"-5456:predictions"},{"to_node_id":"-222:input_data","from_node_id":"-2034:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n#all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"pb_lf_0\nreturn_20\nta_rsi_14_0\nta_ema_30_0\nstd(deal_number_0,30)\n100*ta_bbi(close_30, 'long', timeperiod_1=3, timeperiod_2=6, timeperiod_3=12, timeperiod_4=24)/ta_bbi(close_30, 'short', timeperiod_1=3, timeperiod_2=6, timeperiod_3=12, timeperiod_4=24)\n# ta_atr_14_0\n\n\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-144","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n df = input_1.read_df()\n \n # 数据格式统一:float\n col_names = list(df.columns)\n col_names.remove('instrument')\n col_names.remove('date')\n df.loc[:,col_names] = df.loc[:,col_names].astype(float)\n \n # 处理数据:inf_\n import numpy as np\n df.loc[:,col_names] = df.loc[:,col_names].where(~np.isinf(df.loc[:,col_names].values),other=np.nan)\n data_1 = DataSource.write_df(df)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-144"},{"name":"input_2","node_id":"-144"},{"name":"input_3","node_id":"-144"}],"output_ports":[{"name":"data_1","node_id":"-144"},{"name":"data_2","node_id":"-144"},{"name":"data_3","node_id":"-144"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-168","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n df = input_1.read_df()\n \n # 数据格式统一:float\n col_names = list(df.columns)\n col_names.remove('instrument')\n col_names.remove('date')\n df.loc[:,col_names] = df.loc[:,col_names].astype(float)\n \n # 处理数据:inf_\n import numpy as np\n df.loc[:,col_names] = df.loc[:,col_names].where(~np.isinf(df.loc[:,col_names].values),other=np.nan)\n data_1 = DataSource.write_df(df)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-168"},{"name":"input_2","node_id":"-168"},{"name":"input_3","node_id":"-168"}],"output_ports":[{"name":"data_1","node_id":"-168"},{"name":"data_2","node_id":"-168"},{"name":"data_3","node_id":"-168"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-5962","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-5962"},{"name":"input_2","node_id":"-5962"}],"output_ports":[{"name":"data","node_id":"-5962"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-1205","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n#all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-1205"}],"output_ports":[{"name":"data","node_id":"-1205"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-1222","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-1222"},{"name":"input_2","node_id":"-1222"}],"output_ports":[{"name":"data","node_id":"-1222"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-1228","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-1228"},{"name":"data2","node_id":"-1228"}],"output_ports":[{"name":"data","node_id":"-1228"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-512","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n \n ranker_prediction = ranker_prediction.sort_values('pred_label',ascending=False)\n \n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-512"},{"name":"options_data","node_id":"-512"},{"name":"history_ds","node_id":"-512"},{"name":"benchmark_ds","node_id":"-512"},{"name":"trading_calendar","node_id":"-512"}],"output_ports":[{"name":"raw_perf","node_id":"-512"}],"cacheable":false,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-5456","module_id":"BigQuantSpace.random_forest_regressor.random_forest_regressor-v1","parameters":[{"name":"iterations","value":"20","type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":"0.7","type":"Literal","bound_global_parameter":null},{"name":"max_depth","value":"30","type":"Literal","bound_global_parameter":null},{"name":"min_samples_per_leaf","value":"200","type":"Literal","bound_global_parameter":null},{"name":"key_cols","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"workers","value":"4","type":"Literal","bound_global_parameter":null},{"name":"random_state","value":0,"type":"Literal","bound_global_parameter":null},{"name":"other_train_parameters","value":"{\n 'criterion':'mse',\n}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-5456"},{"name":"features","node_id":"-5456"},{"name":"model","node_id":"-5456"},{"name":"predict_ds","node_id":"-5456"}],"output_ports":[{"name":"output_model","node_id":"-5456"},{"name":"predictions","node_id":"-5456"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-569","module_id":"BigQuantSpace.hyper_rolling_train.hyper_rolling_train-v1","parameters":[{"name":"run","value":"def bigquant_run(\n bq_graph,\n inputs,\n trading_days_market='CN', # 使用那个市场的交易日历, TODO\n train_instruments_mid='m1', # 训练数据 证券代码列表 模块id\n test_instruments_mid='m9', # 测试数据 证券代码列表 模块id\n predict_mid='m10', # 预测 模块id\n trade_mid='m11', # 回测 模块id\n start_date='2019-01-04', # 数据开始日期\n end_date=T.live_run_param('trading_date', '2022-01-01'), # 数据结束日期\n train_update_days=250, # 更新周期,按交易日计算,每多少天更新一次\n train_update_days_for_live=None, #模拟实盘模式下的更新周期,按交易日计算,每多少天更新一次。如果需要在模拟实盘阶段使用不同的模型更新周期,可以设置这个参数\n train_data_min_days=230, # 最小数据天数,按交易日计算,所以第一个滚动的结束日期是 从开始日期到开始日期+最小数据天数\n train_data_max_days=250, # 最大数据天数,按交易日计算,0,表示没有限制,否则每一个滚动的开始日期=max(此滚动的结束日期-最大数据天数, 开始日期\n rolling_count_for_live=1, #实盘模式下滚动次数,模拟实盘模式下,取最后多少次滚动。一般在模拟实盘模式下,只用到最后一次滚动训练的模型,这里可以设置为1;如果你的滚动训练数据时间段很短,以至于期间可能没有训练数据,这里可以设置大一点。0表示没有限制\n):\n def merge_datasources(input_1):\n df_list = [ds[0].read_df().set_index('date').loc[ds[1]:].reset_index() for ds in input_1]\n df = pd.concat(df_list)\n instrument_data = {\n 'start_date': df['date'].min().strftime('%Y-%m-%d'),\n 'end_date': df['date'].max().strftime('%Y-%m-%d'),\n 'instruments': list(set(df['instrument'])),\n }\n return Outputs(data=DataSource.write_df(df), instrument_data=DataSource.write_pickle(instrument_data))\n\n def gen_rolling_dates(trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live):\n # 是否实盘模式\n tdays = list(D.trading_days(market=trading_days_market, start_date=start_date, end_date=end_date)['date'])\n is_live_run = T.live_run_param('trading_date', None) is not None\n\n if is_live_run and train_update_days_for_live:\n train_update_days = train_update_days_for_live\n\n rollings = []\n train_end_date = train_data_min_days\n while train_end_date < len(tdays):\n if train_data_max_days is not None and train_data_max_days > 0:\n train_start_date = max(train_end_date - train_data_max_days, 0)\n else:\n train_start_date = 0\n rollings.append({\n 'train_start_date': tdays[train_start_date].strftime('%Y-%m-%d'),\n 'train_end_date': tdays[train_end_date - 1].strftime('%Y-%m-%d'),\n 'test_start_date': tdays[train_end_date].strftime('%Y-%m-%d'),\n 'test_end_date': tdays[min(train_end_date + train_update_days, len(tdays)) - 1].strftime('%Y-%m-%d'),\n })\n train_end_date += train_update_days\n\n if not rollings:\n raise Exception('没有滚动需要执行,请检查配置')\n\n if is_live_run and rolling_count_for_live:\n rollings = rollings[-rolling_count_for_live:]\n\n return rollings\n\n g = bq_graph\n\n rolling_dates = gen_rolling_dates(\n trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)\n\n # 训练和预测\n results = []\n for rolling in rolling_dates:\n parameters = {}\n # 先禁用回测\n parameters[trade_mid + '.__enabled__'] = False\n parameters[train_instruments_mid + '.start_date'] = rolling['train_start_date']\n parameters[train_instruments_mid + '.end_date'] = rolling['train_end_date']\n parameters[test_instruments_mid + '.start_date'] = rolling['test_start_date']\n parameters[test_instruments_mid + '.end_date'] = rolling['test_end_date']\n # print('------ rolling_train:', parameters)\n results.append(g.run(parameters))\n\n # 合并预测结果并回测\n mx = M.cached.v3(run=merge_datasources, input_1=[[result[predict_mid].predictions, result[test_instruments_mid].data.read_pickle()['start_date']] for result in results])\n parameters = {}\n parameters['*.__enabled__'] = False\n parameters[trade_mid + '.__enabled__'] = True\n parameters[trade_mid + '.instruments'] = mx.instrument_data\n parameters[trade_mid + '.options_data'] = mx.data\n\n trade = g.run(parameters)\n\n return {'rollings': results, 'trade': trade}\n","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-569"},{"name":"input_1","node_id":"-569"},{"name":"input_2","node_id":"-569"},{"name":"input_3","node_id":"-569"}],"output_ports":[{"name":"result","node_id":"-569"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-2034","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-2034"}],"output_ports":[{"name":"data","node_id":"-2034"},{"name":"left_data","node_id":"-2034"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='241,-9,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='83,142,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='672,-8,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='121,433,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1073,-6,200,200'/><node_position Node='-86' Position='867,584,200,200'/><node_position Node='-215' Position='399,134,200,200'/><node_position Node='-222' Position='447,353,200,200'/><node_position Node='-231' Position='1253,155,200,200'/><node_position Node='-238' Position='1239,248,200,200'/><node_position Node='-144' Position='1022,480,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='400,757,200,200'/><node_position Node='-168' Position='330,653,200,200'/><node_position Node='-5962' Position='82,240,200,200'/><node_position Node='-1205' Position='910,162,200,200'/><node_position Node='-1222' Position='910,250,200,200'/><node_position Node='-1228' Position='1130,376,200,200'/><node_position Node='-512' Position='597,1210,200,200'/><node_position Node='-5456' Position='574,994,200,200'/><node_position Node='-569' Position='1097,721,200,200'/><node_position Node='-2034' Position='400,230,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-08-08 16:47:38.781052] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-08-08 16:47:38.789431] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:47:38.791091] INFO: moduleinvoker: instruments.v2 运行完成[0.010043s].
[2022-08-08 16:47:38.795641] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-08-08 16:47:38.823946] INFO: moduleinvoker: input_features.v1 运行完成[0.028292s].
[2022-08-08 16:47:38.829987] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-08-08 16:47:38.835885] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:47:38.837284] INFO: moduleinvoker: instruments.v2 运行完成[0.007296s].
[2022-08-08 16:47:38.846631] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-08-08 16:47:38.853137] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:47:38.854462] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.007828s].
[2022-08-08 16:47:38.867440] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-08-08 16:47:38.875987] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:47:38.877534] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.01009s].
[2022-08-08 16:47:38.885897] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-08-08 16:47:38.893352] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:47:38.894837] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.008937s].
[2022-08-08 16:47:38.907197] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-08-08 16:47:38.913013] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:47:38.914403] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.00721s].
[2022-08-08 16:47:38.919432] INFO: moduleinvoker: standardlize.v9 开始运行..
[2022-08-08 16:47:38.925553] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:47:38.927145] INFO: moduleinvoker: standardlize.v9 运行完成[0.007707s].
[2022-08-08 16:47:38.935038] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2022-08-08 16:47:38.941568] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:47:38.943383] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[0.008343s].
[2022-08-08 16:47:38.948093] INFO: moduleinvoker: standardlize.v9 开始运行..
[2022-08-08 16:47:38.955966] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:47:38.957263] INFO: moduleinvoker: standardlize.v9 运行完成[0.009167s].
[2022-08-08 16:47:38.984809] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-08-08 16:47:41.712187] INFO: derived_feature_extractor: 提取完成 std(deal_number_0,30), 0.826s
[2022-08-08 16:47:54.076980] INFO: derived_feature_extractor: 提取完成 100*ta_bbi(close_30, 'long', timeperiod_1=3, timeperiod_2=6, timeperiod_3=12, timeperiod_4=24)/ta_bbi(close_30, 'short', timeperiod_1=3, timeperiod_2=6, timeperiod_3=12, timeperiod_4=24), 12.363s
[2022-08-08 16:47:54.607436] INFO: derived_feature_extractor: /y_2019, 262339
[2022-08-08 16:47:55.928608] INFO: derived_feature_extractor: /y_2020, 925405
[2022-08-08 16:47:56.286675] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[17.301846s].
[2022-08-08 16:47:56.294481] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-08-08 16:47:59.054627] INFO: derived_feature_extractor: 提取完成 std(deal_number_0,30), 0.745s
[2022-08-08 16:48:11.619049] INFO: derived_feature_extractor: 提取完成 100*ta_bbi(close_30, 'long', timeperiod_1=3, timeperiod_2=6, timeperiod_3=12, timeperiod_4=24)/ta_bbi(close_30, 'short', timeperiod_1=3, timeperiod_2=6, timeperiod_3=12, timeperiod_4=24), 12.563s
[2022-08-08 16:48:13.026879] INFO: derived_feature_extractor: /y_2018, 205974
[2022-08-08 16:48:14.845708] INFO: derived_feature_extractor: /y_2019, 813785
[2022-08-08 16:48:15.918344] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[19.623852s].
[2022-08-08 16:48:15.948379] INFO: moduleinvoker: join.v3 开始运行..
[2022-08-08 16:48:20.757943] INFO: join: /y_2019, 行数=44663/262339, 耗时=1.691993s
[2022-08-08 16:48:26.317208] INFO: join: /y_2020, 行数=898935/925405, 耗时=5.556716s
[2022-08-08 16:48:26.399071] INFO: join: 最终行数: 943598
[2022-08-08 16:48:26.424372] INFO: moduleinvoker: join.v3 运行完成[10.475995s].
[2022-08-08 16:48:26.434446] INFO: moduleinvoker: join.v3 开始运行..
[2022-08-08 16:48:30.743677] INFO: join: /y_2018, 行数=0/205974, 耗时=0.956953s
[2022-08-08 16:48:33.359951] INFO: join: /y_2019, 行数=786448/813785, 耗时=2.613955s
[2022-08-08 16:48:33.649753] INFO: join: 最终行数: 786448
[2022-08-08 16:48:33.668439] INFO: moduleinvoker: join.v3 运行完成[7.233984s].
[2022-08-08 16:48:33.686628] INFO: moduleinvoker: cached.v3 开始运行..
[2022-08-08 16:48:36.748265] INFO: moduleinvoker: cached.v3 运行完成[3.061645s].
[2022-08-08 16:48:36.759580] INFO: moduleinvoker: cached.v3 开始运行..
[2022-08-08 16:48:40.722237] INFO: moduleinvoker: cached.v3 运行完成[3.962648s].
[2022-08-08 16:48:40.734406] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-08-08 16:48:43.542785] INFO: dropnan: /data, 470215/943598
[2022-08-08 16:48:43.660694] INFO: dropnan: 行数: 470215/943598
[2022-08-08 16:48:43.669711] INFO: moduleinvoker: dropnan.v1 运行完成[2.935293s].
[2022-08-08 16:48:43.686452] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-08-08 16:48:45.635341] INFO: dropnan: /data, 396926/786448
[2022-08-08 16:48:45.714315] INFO: dropnan: 行数: 396926/786448
[2022-08-08 16:48:45.726345] INFO: moduleinvoker: dropnan.v1 运行完成[2.039894s].
[2022-08-08 16:48:45.735467] INFO: moduleinvoker: random_forest_regressor.v1 开始运行..
[2022-08-08 16:49:00.526356] INFO: moduleinvoker: random_forest_regressor.v1 运行完成[14.790873s].
[2022-08-08 16:49:00.533553] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-08-08 16:49:00.540704] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:49:00.542716] INFO: moduleinvoker: instruments.v2 运行完成[0.009162s].
[2022-08-08 16:49:00.546958] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-08-08 16:49:00.552250] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:49:00.553665] INFO: moduleinvoker: input_features.v1 运行完成[0.006723s].
[2022-08-08 16:49:00.558632] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-08-08 16:49:00.564793] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:49:00.566230] INFO: moduleinvoker: instruments.v2 运行完成[0.007595s].
[2022-08-08 16:49:00.587856] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-08-08 16:49:00.595515] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:49:00.598088] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.010249s].
[2022-08-08 16:49:00.614056] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-08-08 16:49:00.622153] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:49:00.624134] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.010092s].
[2022-08-08 16:49:00.632903] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-08-08 16:49:00.648991] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:49:00.650951] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.018054s].
[2022-08-08 16:49:00.662941] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-08-08 16:49:00.677060] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:49:00.679388] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.016439s].
[2022-08-08 16:49:00.686673] INFO: moduleinvoker: standardlize.v9 开始运行..
[2022-08-08 16:49:00.693418] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:49:00.695173] INFO: moduleinvoker: standardlize.v9 运行完成[0.008506s].
[2022-08-08 16:49:00.705233] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2022-08-08 16:49:00.712059] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:49:00.713798] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[0.008568s].
[2022-08-08 16:49:00.719220] INFO: moduleinvoker: standardlize.v9 开始运行..
[2022-08-08 16:49:00.727728] INFO: moduleinvoker: 命中缓存
[2022-08-08 16:49:00.729407] INFO: moduleinvoker: standardlize.v9 运行完成[0.010183s].
[2022-08-08 16:49:00.736552] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-08-08 16:49:03.955661] INFO: derived_feature_extractor: 提取完成 std(deal_number_0,30), 0.953s
[2022-08-08 16:49:18.145579] INFO: derived_feature_extractor: 提取完成 100*ta_bbi(close_30, 'long', timeperiod_1=3, timeperiod_2=6, timeperiod_3=12, timeperiod_4=24)/ta_bbi(close_30, 'short', timeperiod_1=3, timeperiod_2=6, timeperiod_3=12, timeperiod_4=24), 14.188s
[2022-08-08 16:49:18.930136] INFO: derived_feature_extractor: /y_2020, 255775
[2022-08-08 16:49:20.549467] INFO: derived_feature_extractor: /y_2021, 1061527
[2022-08-08 16:49:21.149779] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[20.413206s].
[2022-08-08 16:49:21.158011] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-08-08 16:49:23.790143] INFO: derived_feature_extractor: 提取完成 std(deal_number_0,30), 0.797s
[2022-08-08 16:49:35.933538] INFO: derived_feature_extractor: 提取完成 100*ta_bbi(close_30, 'long', timeperiod_1=3, timeperiod_2=6, timeperiod_3=12, timeperiod_4=24)/ta_bbi(close_30, 'short', timeperiod_1=3, timeperiod_2=6, timeperiod_3=12, timeperiod_4=24), 12.141s
[2022-08-08 16:49:36.469722] INFO: derived_feature_extractor: /y_2019, 253180
[2022-08-08 16:49:37.713263] INFO: derived_feature_extractor: /y_2020, 883534
[2022-08-08 16:49:38.042911] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[16.884886s].
[2022-08-08 16:49:38.053468] INFO: moduleinvoker: join.v3 开始运行..
[2022-08-08 16:49:40.835919] INFO: join: /y_2020, 行数=20490/255775, 耗时=0.894199s
[2022-08-08 16:49:43.904376] INFO: join: /y_2021, 行数=1035254/1061527, 耗时=3.065812s
[2022-08-08 16:49:43.995145] INFO: join: 最终行数: 1055744
[2022-08-08 16:49:44.008897] INFO: moduleinvoker: join.v3 运行完成[5.955419s].
[2022-08-08 16:49:44.022266] INFO: moduleinvoker: join.v3 开始运行..
[2022-08-08 16:49:46.434525] INFO: join: /y_2019, 行数=43147/253180, 耗时=0.831003s
[2022-08-08 16:49:48.878233] INFO: join: /y_2020, 行数=859430/883534, 耗时=2.440957s
[2022-08-08 16:49:48.949638] INFO: join: 最终行数: 902577
[2022-08-08 16:49:48.961943] INFO: moduleinvoker: join.v3 运行完成[4.939667s].
[2022-08-08 16:49:48.990118] INFO: moduleinvoker: cached.v3 开始运行..
[2022-08-08 16:49:52.241956] INFO: moduleinvoker: cached.v3 运行完成[3.251837s].
[2022-08-08 16:49:52.256418] INFO: moduleinvoker: cached.v3 开始运行..
[2022-08-08 16:49:54.995293] INFO: moduleinvoker: cached.v3 运行完成[2.738878s].
[2022-08-08 16:49:55.004650] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-08-08 16:49:57.794537] INFO: dropnan: /data, 562593/1055744
[2022-08-08 16:49:57.850700] INFO: dropnan: 行数: 562593/1055744
[2022-08-08 16:49:57.859611] INFO: moduleinvoker: dropnan.v1 运行完成[2.854954s].
[2022-08-08 16:49:57.882475] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-08-08 16:50:00.396112] INFO: dropnan: /data, 447303/902577
[2022-08-08 16:50:00.495105] INFO: dropnan: 行数: 447303/902577
[2022-08-08 16:50:00.570060] INFO: moduleinvoker: dropnan.v1 运行完成[2.687578s].
[2022-08-08 16:50:00.586487] INFO: moduleinvoker: random_forest_regressor.v1 开始运行..
[2022-08-08 16:50:19.770553] INFO: moduleinvoker: random_forest_regressor.v1 运行完成[19.18406s].
[2022-08-08 16:50:19.807013] INFO: moduleinvoker: cached.v3 开始运行..
[2022-08-08 16:50:21.840793] INFO: moduleinvoker: cached.v3 运行完成[2.033785s].
[2022-08-08 16:50:21.901986] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-08-08 16:50:21.907506] INFO: backtest: biglearning backtest:V8.6.2
[2022-08-08 16:50:21.908876] INFO: backtest: product_type:stock by specified
[2022-08-08 16:50:22.093229] INFO: moduleinvoker: cached.v2 开始运行..
[2022-08-08 16:50:29.407889] INFO: backtest: 读取股票行情完成:3271945
[2022-08-08 16:50:32.851888] INFO: moduleinvoker: cached.v2 运行完成[10.758666s].
[2022-08-08 16:50:53.334769] INFO: algo: TradingAlgorithm V1.8.8
[2022-08-08 16:50:55.747936] INFO: algo: trading transform...
[2022-08-08 16:51:00.406627] WARNING: Performance: maybe_close_position no price for asset:Equity(5567 [300156.SZA]), field:price, dt:2020-08-25 15:00:00+00:00
[2022-08-08 16:51:08.517164] INFO: Performance: Simulated 493 trading days out of 493.
[2022-08-08 16:51:08.518983] INFO: Performance: first open: 2019-12-16 09:30:00+00:00
[2022-08-08 16:51:08.520312] INFO: Performance: last close: 2021-12-24 15:00:00+00:00
[2022-08-08 16:51:14.170721] INFO: moduleinvoker: backtest.v8 运行完成[52.26874s].
[2022-08-08 16:51:14.172521] INFO: moduleinvoker: trade.v4 运行完成[52.323782s].
[2022-08-08 16:51:14.174154] INFO: moduleinvoker: hyper_rolling_train.v1 运行完成[215.430826s].
- 收益率73.95%
- 年化收益率32.71%
- 基准收益率24.02%
- 阿尔法0.22
- 贝塔0.84
- 夏普比率1.1
- 胜率0.51
- 盈亏比1.24
- 收益波动率26.07%
- 信息比率0.06
- 最大回撤21.3%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-c6aee084584845b0922c48a8e3ef98ee"}/bigcharts-data-end