{"Description":"实验创建于2020/11/5","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-67226:instruments","SourceOutputPortId":"-714:data"},{"DestinationInputPortId":"-2485:features","SourceOutputPortId":"-3659:data_1"},{"DestinationInputPortId":"-2485:input_data","SourceOutputPortId":"-67226:data"},{"DestinationInputPortId":"-3659:input_1","SourceOutputPortId":"-67226:data"},{"DestinationInputPortId":"-67226:features","SourceOutputPortId":"-67232:data"}],"ModuleNodes":[{"Id":"-714","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2020-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-714"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-714","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2485","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-2485"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-2485"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2485","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3659","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"import pandas as pd\nimport numpy as np\n# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1):\n # 示例代码如下。在这里编写您的代码\n data = input_1.read_df()\n data = data[['date', 'close']]\n close_fft = np.fft.fft(np.asarray(data['close'].tolist()))\n fft_df = pd.DataFrame({'fft':close_fft})\n fft_df['absolute'] = fft_df['fft'].apply(lambda x: np.abs(x))\n fft_df['angle'] = fft_df['fft'].apply(lambda x: np.angle(x))\n\n\n fft_list = np.asarray(fft_df['fft'].tolist())\n fft_list[300:-300] = 0\n f1= np.fft.ifft(fft_list)\n return Outputs(data_1=f1, data_2=None, data_3=None)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-3659"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-3659"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-3659"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-3659","OutputType":null},{"Name":"data_2","NodeId":"-3659","OutputType":null},{"Name":"data_3","NodeId":"-3659","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-67226","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"bar1d_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-67226"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-67226"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-67226","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-67232","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nclose\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-67232"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-67232","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='-714' Position='310,96,200,200'/><NodePosition Node='-2485' Position='434,491,200,200'/><NodePosition Node='-3659' Position='560.2686157226562,350,200,200'/><NodePosition Node='-67226' Position='352,237,200,200'/><NodePosition Node='-67232' Position='633,96,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2020-11-09 09:11:17.540936] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-11-09 09:11:17.560093] INFO: moduleinvoker: 命中缓存
[2020-11-09 09:11:17.561120] INFO: moduleinvoker: instruments.v2 运行完成[0.020206s].
[2020-11-09 09:11:17.565864] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-11-09 09:11:17.593391] INFO: moduleinvoker: input_features.v1 运行完成[0.027501s].
[2020-11-09 09:11:17.620249] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2020-11-09 09:11:19.906063] INFO: moduleinvoker: use_datasource.v1 运行完成[2.285802s].
[2020-11-09 09:11:19.915640] INFO: moduleinvoker: cached.v3 开始运行..
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-2-5c7a70cc4c82> in <module>()
56 input_ports='',
57 params='{}',
---> 58 output_ports=''
59 )
TypeError: _cache_value_encoder: not supported type: <class 'numpy.ndarray'>