{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-215:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-215:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-222:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-276:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-283:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-250:options_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"DestinationInputPortId":"-250:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-276:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","SourceOutputPortId":"-86:data"},{"DestinationInputPortId":"-222:input_data","SourceOutputPortId":"-215:data"},{"DestinationInputPortId":"-227:input_1","SourceOutputPortId":"-222:data"},{"DestinationInputPortId":"-267:input_data","SourceOutputPortId":"-227:data_1"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","SourceOutputPortId":"-262:data"},{"DestinationInputPortId":"-327:features","SourceOutputPortId":"-262:data"},{"DestinationInputPortId":"-267:features","SourceOutputPortId":"-262:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-267:data"},{"DestinationInputPortId":"-283:input_data","SourceOutputPortId":"-276:data"},{"DestinationInputPortId":"-295:input_1","SourceOutputPortId":"-283:data"},{"DestinationInputPortId":"-327:input_data","SourceOutputPortId":"-295:data_1"},{"DestinationInputPortId":"-86:input_data","SourceOutputPortId":"-327:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2017-12-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"训练数据","CommentCollapsed":false},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"amount_0/deal_number_0\nhigh_0/low_0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"用于计算反转因子的数据","CommentCollapsed":false},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"OutputPortsInternal":[{"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","OutputType":null},{"Name":"feature_gains","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2019-03-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-86","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-86"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-86","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-215","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-215"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-215"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-215","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"用于计算反转因子的特征抽取","CommentCollapsed":false},{"Id":"-222","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-222"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-222"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-222","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-250","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-250"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-250","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-227","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"def bigquant_run(input_1, N=20):\n assert N % 2 == 0\n\n import pandas as pd\n import numpy as np\n N2 = N // 2\n df = input_1.read()\n\n def process_instrument(x):\n x['Median'] = x['amount_0/deal_number_0'].rolling(N).median()\n high = None\n low = None\n for i in range(N):\n y = x['amount_0/deal_number_0'].shift(i) > x['Median']\n h = y.astype(np.int32) * x['high_0/low_0'].shift(i)\n if high is None:\n high = h\n else:\n high += h\n l = (~y).astype(np.int32) * x['high_0/low_0'].shift(i)\n if low is None:\n low = l\n else:\n low += l\n x['M_high'] = high\n x['M_low'] = low\n return x\n\n g = df[['amount_0/deal_number_0', 'high_0/low_0']].groupby(df['instrument'], as_index=False)\n df2 = g.apply(process_instrument)\n # 并行计算版\n # df2 = pd.concat(T.parallel_map(process_instrument, [{'x': x[1]} for x in g]))\n df['M_high'], df['M_low'] = df2['M_high'], df2['M_low']\n\n data_1 = DataSource.write_df(df[['date', 'instrument', 'M_high', 'M_low']])\n\n return Outputs(data_1=data_1)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"input_1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{\n 'N': 20\n}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"data_1","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-227"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-227"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-227"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-227","OutputType":null},{"Name":"data_2","NodeId":"-227","OutputType":null},{"Name":"data_3","NodeId":"-227","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"计算反转因子,输出 M_high, M_low,数据量大的情况可能计算要小时,可以优化代码和使用并行能提高速度","CommentCollapsed":false},{"Id":"-262","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# 再抽取一些其他训练特征一起训练\nM_high-M_low","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-262"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-262","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"IsPartOfPartialRun":null,"Comment":"M_high-M_low","CommentCollapsed":false},{"Id":"-267","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-267"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-267"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-267","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":21,"IsPartOfPartialRun":null,"Comment":"计算 M = M_high - M_low,也可以放在前面一步完成,这里更多展示如何灵活的使用","CommentCollapsed":false},{"Id":"-276","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"40","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-276"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-276"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-276","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":22,"IsPartOfPartialRun":null,"Comment":"用于计算反转因子的特征抽取","CommentCollapsed":false},{"Id":"-283","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-283"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-283"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-283","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":23,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-295","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"def bigquant_run(input_1, N=20):\n assert N % 2 == 0\n\n import pandas as pd\n import numpy as np\n N2 = N // 2\n df = input_1.read()\n\n def process_instrument(x):\n x['Median'] = x['amount_0/deal_number_0'].rolling(N).median()\n high = None\n low = None\n for i in range(N):\n y = x['amount_0/deal_number_0'].shift(i) > x['Median']\n h = y.astype(np.int32) * x['high_0/low_0'].shift(i)\n if high is None:\n high = h\n else:\n high += h\n l = (~y).astype(np.int32) * x['high_0/low_0'].shift(i)\n if low is None:\n low = l\n else:\n low += l\n x['M_high'] = high\n x['M_low'] = low\n return x\n\n g = df[['amount_0/deal_number_0', 'high_0/low_0']].groupby(df['instrument'], as_index=False)\n df2 = g.apply(process_instrument)\n # 并行计算版\n # df2 = pd.concat(T.parallel_map(process_instrument, [{'x': x[1]} for x in g]))\n df['M_high'], df['M_low'] = df2['M_high'], df2['M_low']\n\n data_1 = DataSource.write_df(df[['date', 'instrument', 'M_high', 'M_low']])\n\n return Outputs(data_1=data_1)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"input_1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{\n 'N': 20\n}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"data_1","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-295"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-295"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-295"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-295","OutputType":null},{"Name":"data_2","NodeId":"-295","OutputType":null},{"Name":"data_3","NodeId":"-295","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":24,"IsPartOfPartialRun":null,"Comment":"计算反转因子,输出 M_high, M_low,数据量大的情况可能计算要小时,可以优化代码和使用并行能提高速度","CommentCollapsed":false},{"Id":"-327","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-327"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-327"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-327","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":28,"IsPartOfPartialRun":null,"Comment":"计算 M = M_high - M_low,也可以放在前面一步完成,这里更多展示如何灵活的使用","CommentCollapsed":false}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='429,-100,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='242,-7,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='636,-234,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='720,711,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='458,531,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='986,794,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1092,-94,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='566,612,200,200'/><NodePosition Node='-86' Position='1092,528,200,200'/><NodePosition Node='-215' Position='560,-6,200,200'/><NodePosition Node='-222' Position='561,88,200,200'/><NodePosition Node='-250' Position='1108,892,200,200'/><NodePosition Node='-227' Position='558,167,200,200'/><NodePosition Node='-262' Position='990,-228,200,200'/><NodePosition Node='-267' Position='561,323,200,200'/><NodePosition Node='-276' Position='1094,-1,200,200'/><NodePosition Node='-283' Position='1096,92,200,200'/><NodePosition Node='-295' Position='1095,160,200,200'/><NodePosition Node='-327' Position='1095,311,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2019-03-04 21:13:00.455481] INFO: bigquant: instruments.v2 开始运行..
[2019-03-04 21:13:00.462917] INFO: bigquant: 命中缓存
[2019-03-04 21:13:00.464463] INFO: bigquant: instruments.v2 运行完成[0.008984s].
[2019-03-04 21:13:00.468210] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
[2019-03-04 21:13:00.474532] INFO: bigquant: 命中缓存
[2019-03-04 21:13:00.476384] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.008169s].
[2019-03-04 21:13:00.479292] INFO: bigquant: input_features.v1 开始运行..
[2019-03-04 21:13:00.486145] INFO: bigquant: 命中缓存
[2019-03-04 21:13:00.487641] INFO: bigquant: input_features.v1 运行完成[0.008346s].
[2019-03-04 21:13:00.496190] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-03-04 21:13:00.503530] INFO: bigquant: 命中缓存
[2019-03-04 21:13:00.504910] INFO: bigquant: general_feature_extractor.v7 运行完成[0.00872s].
[2019-03-04 21:13:00.508034] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-03-04 21:13:00.513708] INFO: bigquant: 命中缓存
[2019-03-04 21:13:00.514985] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.006963s].
[2019-03-04 21:13:00.520559] INFO: bigquant: cached.v3 开始运行..
[2019-03-04 21:13:00.526124] INFO: bigquant: 命中缓存
[2019-03-04 21:13:00.527696] INFO: bigquant: cached.v3 运行完成[0.007131s].
[2019-03-04 21:13:00.530527] INFO: bigquant: instruments.v2 开始运行..
[2019-03-04 21:13:00.536581] INFO: bigquant: 命中缓存
[2019-03-04 21:13:00.537941] INFO: bigquant: instruments.v2 运行完成[0.007408s].
[2019-03-04 21:13:00.543890] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-03-04 21:13:02.822150] INFO: 基础特征抽取: 年份 2017, 特征行数=90630
[2019-03-04 21:13:05.139529] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2019-03-04 21:13:05.433983] INFO: 基础特征抽取: 年份 2019, 特征行数=135421
[2019-03-04 21:13:05.456965] INFO: 基础特征抽取: 总行数: 1043038
[2019-03-04 21:13:05.461393] INFO: bigquant: general_feature_extractor.v7 运行完成[4.917493s].
[2019-03-04 21:13:05.464685] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-03-04 21:13:06.162338] INFO: general_feature_extractor: 提取完成 amount_0/deal_number_0, 0.005s
[2019-03-04 21:13:06.168474] INFO: general_feature_extractor: 提取完成 high_0/low_0, 0.004s
[2019-03-04 21:13:06.269672] INFO: general_feature_extractor: /y_2017, 90630
[2019-03-04 21:13:06.489065] INFO: general_feature_extractor: /y_2018, 816987
[2019-03-04 21:13:07.061414] INFO: general_feature_extractor: /y_2019, 135421
[2019-03-04 21:13:07.186475] INFO: bigquant: derived_feature_extractor.v3 运行完成[1.721767s].
[2019-03-04 21:13:07.193601] INFO: bigquant: cached.v3 开始运行..
[2019-03-04 21:14:49.908546] INFO: bigquant: cached.v3 运行完成[102.714939s].
[2019-03-04 21:14:49.911778] INFO: bigquant: input_features.v1 开始运行..
[2019-03-04 21:14:49.917222] INFO: bigquant: 命中缓存
[2019-03-04 21:14:49.918583] INFO: bigquant: input_features.v1 运行完成[0.006802s].
[2019-03-04 21:14:49.921243] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-03-04 21:14:50.246435] INFO: general_feature_extractor: 提取完成 M_high-M_low, 0.004s
[2019-03-04 21:14:50.517684] INFO: general_feature_extractor: /data, 1043038
[2019-03-04 21:14:51.298537] INFO: bigquant: derived_feature_extractor.v3 运行完成[1.377279s].
[2019-03-04 21:14:51.302174] INFO: bigquant: dropnan.v1 开始运行..
[2019-03-04 21:14:52.239643] INFO: dropnan: /data, 974832/1043038
[2019-03-04 21:14:52.264528] INFO: dropnan: 行数: 974832/1043038
[2019-03-04 21:14:52.311534] INFO: bigquant: dropnan.v1 运行完成[1.009347s].
[2019-03-04 21:14:52.314700] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-03-04 21:14:53.534912] INFO: general_feature_extractor: 提取完成 M_high-M_low, 0.011s
[2019-03-04 21:14:54.262990] INFO: general_feature_extractor: /data, 1954477
[2019-03-04 21:14:55.767063] INFO: bigquant: derived_feature_extractor.v3 运行完成[3.452293s].
[2019-03-04 21:14:55.770986] INFO: bigquant: join.v3 开始运行..
[2019-03-04 21:15:00.644274] INFO: join: /data, 行数=1919027/1954477, 耗时=3.471797s
[2019-03-04 21:15:00.887898] INFO: join: 最终行数: 1919027
[2019-03-04 21:15:00.891642] INFO: bigquant: join.v3 运行完成[5.120647s].
[2019-03-04 21:15:00.894727] INFO: bigquant: dropnan.v1 开始运行..
[2019-03-04 21:15:03.331397] INFO: dropnan: /data, 1862934/1919027
[2019-03-04 21:15:03.678394] INFO: dropnan: 行数: 1862934/1919027
[2019-03-04 21:15:03.783786] INFO: bigquant: dropnan.v1 运行完成[2.889044s].
[2019-03-04 21:15:03.789544] INFO: bigquant: stock_ranker_train.v5 开始运行..
[2019-03-04 21:15:04.424133] INFO: StockRanker: 特征预处理 ..
[2019-03-04 21:15:04.659584] INFO: StockRanker: prepare data: training ..
[2019-03-04 21:15:05.082711] INFO: StockRanker: sort ..
[2019-03-04 21:15:20.653960] INFO: StockRanker训练: 85cb0ab0 准备训练: 1862934 行数
[2019-03-04 21:15:20.675383] INFO: StockRanker训练: 正在训练 ..
[2019-03-04 21:19:23.779793] INFO: bigquant: stock_ranker_train.v5 运行完成[259.99024s].
[2019-03-04 21:19:23.783348] INFO: bigquant: stock_ranker_predict.v5 开始运行..
[2019-03-04 21:19:24.376599] INFO: StockRanker: prepare data: prediction ..
[2019-03-04 21:19:32.239614] INFO: stock_ranker_predict: 准备预测: 974832 行
[2019-03-04 21:19:32.245512] INFO: stock_ranker_predict: 正在预测 ..
[2019-03-04 21:28:18.759319] INFO: bigquant: stock_ranker_predict.v5 运行完成[534.975942s].
[2019-03-04 21:28:18.783207] INFO: bigquant: backtest.v8 开始运行..
[2019-03-04 21:28:18.786261] INFO: bigquant: biglearning backtest:V8.1.11
[2019-03-04 21:28:18.788101] INFO: bigquant: product_type:stock by specified
[2019-03-04 21:28:27.867982] INFO: bigquant: 读取股票行情完成:1791327
[2019-03-04 21:28:47.179898] INFO: algo: TradingAlgorithm V1.4.7
[2019-03-04 21:28:59.009171] INFO: algo: trading transform...
[2019-03-04 21:29:07.417244] INFO: Performance: Simulated 281 trading days out of 281.
[2019-03-04 21:29:07.418930] INFO: Performance: first open: 2018-01-02 09:30:00+00:00
[2019-03-04 21:29:07.420387] INFO: Performance: last close: 2019-03-01 15:00:00+00:00
[2019-03-04 21:29:10.085246] INFO: bigquant: backtest.v8 运行完成[51.302034s].
- 收益率8.06%
- 年化收益率7.2%
- 基准收益率-6.97%
- 阿尔法0.14
- 贝塔0.89
- 夏普比率0.28
- 胜率0.52
- 盈亏比1.02
- 收益波动率28.62%
- 信息比率0.05
- 最大回撤33.74%