{"description":"实验创建于2022/3/30","graph":{"edges":[{"to_node_id":"-212:instruments","from_node_id":"-182:data"},{"to_node_id":"-195:instruments","from_node_id":"-182:data"},{"to_node_id":"-195:features","from_node_id":"-190:data"},{"to_node_id":"-202:features","from_node_id":"-190:data"},{"to_node_id":"-202:input_data","from_node_id":"-195:data"},{"to_node_id":"-212:feature_datas","from_node_id":"-202:data"}],"nodes":[{"node_id":"-182","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-182"}],"output_ports":[{"name":"data","node_id":"-182"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-190","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-190"}],"output_ports":[{"name":"data","node_id":"-190"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-195","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-195"},{"name":"features","node_id":"-195"}],"output_ports":[{"name":"data","node_id":"-195"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-202","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-202"},{"name":"features","node_id":"-202"}],"output_ports":[{"name":"data","node_id":"-202"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-212","module_id":"BigQuantSpace.genetic_algorithm.genetic_algorithm-v1","parameters":[{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"freq","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"all_start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"all_end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"short_date_range_ratio","value":0.7,"type":"Literal","bound_global_parameter":null},{"name":"return_field","value":"open","type":"Literal","bound_global_parameter":null},{"name":"rebalance_period","value":1,"type":"Literal","bound_global_parameter":null},{"name":"train_test_ratio","value":0.75,"type":"Literal","bound_global_parameter":null},{"name":"train_validate_ratio","value":0.75,"type":"Literal","bound_global_parameter":null},{"name":"mtime","value":1,"type":"Literal","bound_global_parameter":null},{"name":"init_ind_num","value":10,"type":"Literal","bound_global_parameter":null},{"name":"ngen","value":3,"type":"Literal","bound_global_parameter":null},{"name":"fitness_func","value":"icir","type":"Literal","bound_global_parameter":null},{"name":"train_fitness","value":"0.16","type":"Literal","bound_global_parameter":null},{"name":"test_fitness","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"ir_type","value":"ir","type":"Literal","bound_global_parameter":null},{"name":"cxpb","value":"1","type":"Literal","bound_global_parameter":null},{"name":"mutpb","value":0.3,"type":"Literal","bound_global_parameter":null},{"name":"mutspb","value":0.3,"type":"Literal","bound_global_parameter":null},{"name":"mutnrpb","value":0.3,"type":"Literal","bound_global_parameter":null},{"name":"constant","value":"1,11","type":"Literal","bound_global_parameter":null},{"name":"pool_processes_limit","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot","value":"True","type":"Literal","bound_global_parameter":null},{"name":"logs","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-212"},{"name":"feature_datas","node_id":"-212"},{"name":"base_features","node_id":"-212"}],"output_ports":[{"name":"factors","node_id":"-212"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-182' Position='114,147,200,200'/><node_position Node='-190' Position='413,148,200,200'/><node_position Node='-195' Position='413,275,200,200'/><node_position Node='-202' Position='449,408,200,200'/><node_position Node='-212' Position='326,535,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2023-02-27 10:17:56.138435] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-02-27 10:17:56.153737] INFO: moduleinvoker: 命中缓存
[2023-02-27 10:17:56.155820] INFO: moduleinvoker: instruments.v2 运行完成[0.017401s].
[2023-02-27 10:17:56.162827] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-02-27 10:17:56.173083] INFO: moduleinvoker: 命中缓存
[2023-02-27 10:17:56.175981] INFO: moduleinvoker: input_features.v1 运行完成[0.013172s].
[2023-02-27 10:17:56.194786] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-02-27 10:17:57.259079] INFO: 基础特征抽取: 年份 2018, 特征行数=210561
[2023-02-27 10:18:00.122065] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2023-02-27 10:18:03.077050] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2023-02-27 10:18:06.246920] INFO: 基础特征抽取: 年份 2021, 特征行数=1061527
[2023-02-27 10:18:09.460515] INFO: 基础特征抽取: 年份 2022, 特征行数=1171038
[2023-02-27 10:18:09.633491] INFO: 基础特征抽取: 总行数: 4273954
[2023-02-27 10:18:09.645317] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[13.450529s].
[2023-02-27 10:18:09.656756] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-02-27 10:18:18.436849] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.013s
[2023-02-27 10:18:18.451497] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.012s
[2023-02-27 10:18:18.460217] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.007s
[2023-02-27 10:18:18.469655] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.007s
[2023-02-27 10:18:18.479640] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.008s
[2023-02-27 10:18:18.487913] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.006s
[2023-02-27 10:18:20.127506] INFO: derived_feature_extractor: /y_2018, 210561
[2023-02-27 10:18:21.868289] INFO: derived_feature_extractor: /y_2019, 884867
[2023-02-27 10:18:24.181111] INFO: derived_feature_extractor: /y_2020, 945961
[2023-02-27 10:18:26.749889] INFO: derived_feature_extractor: /y_2021, 1061527
[2023-02-27 10:18:29.769459] INFO: derived_feature_extractor: /y_2022, 1171038
[2023-02-27 10:18:30.860648] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[21.203878s].
[2023-02-27 10:18:32.388659] INFO: moduleinvoker: genetic_algorithm.v1 开始运行..
[2023-02-27 10:18:43.557989] INFO: 遗传规划: loading data from 2019-01-01 to 2021-10-19...
[2023-02-27 10:19:31.118966] INFO: 遗传规划: loaded data from 2019-01-01 to 2021-10-19 successfully
[2023-02-27 10:19:31.664083] INFO: 遗传规划: loading data from 2019-01-01 to 2022-12-31...
[2023-02-27 10:20:48.177837] INFO: 遗传规划: loaded data from 2019-01-01 to 2022-12-31 successfully
[2023-02-27 10:20:48.267232] INFO: 遗传规划: 初始化toolbox ...
[2023-02-27 10:20:48.278087] INFO: 遗传规划: == 开始第「1」次因子挖掘 ==
[2023-02-27 10:20:48.280480] INFO: 遗传规划: -- 开始第「1」次循环第「1」代挖掘 --
[2023-02-27 10:20:48.336162] ERROR: moduleinvoker: module name: genetic_algorithm, module version: v1, trackeback: File "", line 1
lambda avg_amount_0,avg_amount_20,avg_amount_5,pe_ttm_0,rank_avg_amount_0,rank_avg_amount_10,rank_avg_amount_5,rank_return_0,rank_return_10,rank_return_5,return_10,return_20,return_5,avg_amount_0/avg_amount_5,avg_amount_5/avg_amount_20,rank_avg_amount_0/rank_avg_amount_5,rank_avg_amount_5/rank_avg_amount_10,rank_return_0/rank_return_5,rank_return_5/rank_return_10,open: max(normalize(return_20), product(rank_avg_amount_0/rank_avg_amount_5, 1))
^
SyntaxError: invalid syntax
Traceback (most recent call last):
File "/usr/local/python3/lib/python3.8/site-packages/IPython/core/interactiveshell.py", line 3427, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-2-23f7cc2494c5>", line 51, in <module>
m5 = M.genetic_algorithm.v1(
File "module2/common/modulemanagerv2.py", line 88, in biglearning.module2.common.modulemanagerv2.BigQuantModuleVersion.__call__
File "module2/common/moduleinvoker.py", line 331, in biglearning.module2.common.moduleinvoker.module_invoke
File "module2/common/moduleinvoker.py", line 253, in biglearning.module2.common.moduleinvoker._invoke_with_cache
File "module2/common/moduleinvoker.py", line 214, in biglearning.module2.common.moduleinvoker._invoke_with_cache
File "module2/common/moduleinvoker.py", line 171, in biglearning.module2.common.moduleinvoker._module_run
File "module2/modules/genetic_algorithm/v1/__init__.py", line 152, in biglearning.module2.modules.genetic_algorithm.v1.__init__.bigquant_run
File "/usr/local/python3/lib/python3.8/site-packages/deap/gp.py", line 478, in compile
return eval(code, pset.context, {})
File "<string>", line 1
lambda avg_amount_0,avg_amount_20,avg_amount_5,pe_ttm_0,rank_avg_amount_0,rank_avg_amount_10,rank_avg_amount_5,rank_return_0,rank_return_10,rank_return_5,return_10,return_20,return_5,avg_amount_0/avg_amount_5,avg_amount_5/avg_amount_20,rank_avg_amount_0/rank_avg_amount_5,rank_avg_amount_5/rank_avg_amount_10,rank_return_0/rank_return_5,rank_return_5/rank_return_10,open: max(normalize(return_20), product(rank_avg_amount_0/rank_avg_amount_5, 1))
^
SyntaxError: invalid syntax