{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-8150:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"},{"to_node_id":"-274:instruments","from_node_id":"-266:data"},{"to_node_id":"-332:instruments","from_node_id":"-266:data"},{"to_node_id":"-305:data1","from_node_id":"-274:data"},{"to_node_id":"-293:features","from_node_id":"-284:data"},{"to_node_id":"-332:features","from_node_id":"-284:data"},{"to_node_id":"-339:features","from_node_id":"-284:data"},{"to_node_id":"-348:features","from_node_id":"-284:data"},{"to_node_id":"-355:features","from_node_id":"-284:data"},{"to_node_id":"-313:model","from_node_id":"-293:model"},{"to_node_id":"-325:input_data","from_node_id":"-305:data"},{"to_node_id":"-8150:input_2","from_node_id":"-313:predictions"},{"to_node_id":"-348:instruments","from_node_id":"-317:data"},{"to_node_id":"-293:training_ds","from_node_id":"-325:data"},{"to_node_id":"-313:data","from_node_id":"-328:data"},{"to_node_id":"-339:input_data","from_node_id":"-332:data"},{"to_node_id":"-305:data2","from_node_id":"-339:data"},{"to_node_id":"-355:input_data","from_node_id":"-348:data"},{"to_node_id":"-328:input_data","from_node_id":"-355:data"},{"to_node_id":"-250:options_data","from_node_id":"-8150:data_1"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n \n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n #按照score2卖出股票\n df_sell = ranker_prediction[ranker_prediction.instrument.isin(equities)].sort_values('score2')\n instruments = df_sell.instrument.unique()\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n# print(data.current_dt.strftime('%Y-%m-%d'),buy_instruments)\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-266","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-266"}],"output_ports":[{"name":"data","node_id":"-266"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-274","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-274"}],"output_ports":[{"name":"data","node_id":"-274"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-284","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\nfs_net_profit_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-284"}],"output_ports":[{"name":"data","node_id":"-284"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-293"},{"name":"features","node_id":"-293"},{"name":"test_ds","node_id":"-293"},{"name":"base_model","node_id":"-293"}],"output_ports":[{"name":"model","node_id":"-293"},{"name":"feature_gains","node_id":"-293"},{"name":"m_lazy_run","node_id":"-293"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-305","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-305"},{"name":"data2","node_id":"-305"}],"output_ports":[{"name":"data","node_id":"-305"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-313","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"-313"},{"name":"data","node_id":"-313"}],"output_ports":[{"name":"predictions","node_id":"-313"},{"name":"m_lazy_run","node_id":"-313"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-317","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-317"}],"output_ports":[{"name":"data","node_id":"-317"}],"cacheable":true,"seq_num":21,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"-325","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-325"}],"output_ports":[{"name":"data","node_id":"-325"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-328","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-328"}],"output_ports":[{"name":"data","node_id":"-328"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-332","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-332"},{"name":"features","node_id":"-332"}],"output_ports":[{"name":"data","node_id":"-332"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-339","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-339"},{"name":"features","node_id":"-339"}],"output_ports":[{"name":"data","node_id":"-339"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-348","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-348"},{"name":"features","node_id":"-348"}],"output_ports":[{"name":"data","node_id":"-348"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-355","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-355"},{"name":"features","node_id":"-355"}],"output_ports":[{"name":"data","node_id":"-355"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-8150","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 分别读取两个模型的数据\n df1 = input_1.read().rename(columns={'score':'score1','position':'position1'})\n df2 = input_2.read().rename(columns={'score':'score2','position':'position2'})\n \n #合并重新计算得分\n df = pd.merge(left=df1,right=df2,on=['date','instrument'],how='inner')\n df['score'] = df.score1\n #排序\n df = df.groupby('date').apply(lambda x:x.sort_values('score',ascending=False)).reset_index(drop=True)\n\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-8150"},{"name":"input_2","node_id":"-8150"},{"name":"input_3","node_id":"-8150"}],"output_ports":[{"name":"data_1","node_id":"-8150"},{"name":"data_2","node_id":"-8150"},{"name":"data_3","node_id":"-8150"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='213,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='76,215,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='560,11,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='587,528,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='251,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='777,610,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='745,110,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='339,455,200,200'/><node_position Node='-86' Position='745,429,200,200'/><node_position Node='-215' Position='383,188,200,200'/><node_position Node='-222' Position='387,280,200,200'/><node_position Node='-231' Position='745,247,200,200'/><node_position Node='-238' Position='748,338,200,200'/><node_position Node='-250' Position='1033,841,200,200'/><node_position Node='-266' Position='1249,67,200,200'/><node_position Node='-274' Position='1106,184,200,200'/><node_position Node='-284' Position='1611,4,200,200'/><node_position Node='-293' Position='1610,537,200,200'/><node_position Node='-305' Position='1287,378,200,200'/><node_position Node='-313' Position='1676,634,200,200'/><node_position Node='-317' Position='1791,139,200,200'/><node_position Node='-325' Position='1375,459,200,200'/><node_position Node='-328' Position='1786,426,200,200'/><node_position Node='-332' Position='1419,191,200,200'/><node_position Node='-339' Position='1423,283,200,200'/><node_position Node='-348' Position='1786,244,200,200'/><node_position Node='-355' Position='1789,335,200,200'/><node_position Node='-8150' Position='1148,720,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-03-29 13:56:52.480781] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-29 13:56:52.651838] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:52.654245] INFO: moduleinvoker: instruments.v2 运行完成[0.173484s].
[2022-03-29 13:56:52.665742] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-03-29 13:56:52.678184] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:52.681827] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.016058s].
[2022-03-29 13:56:52.689215] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-03-29 13:56:52.699702] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:52.701773] INFO: moduleinvoker: input_features.v1 运行完成[0.01262s].
[2022-03-29 13:56:52.721977] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-29 13:56:52.743584] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:52.745698] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.023753s].
[2022-03-29 13:56:52.756179] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-29 13:56:52.764781] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:52.766586] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010412s].
[2022-03-29 13:56:52.777317] INFO: moduleinvoker: join.v3 开始运行..
[2022-03-29 13:56:52.786028] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:52.787831] INFO: moduleinvoker: join.v3 运行完成[0.010516s].
[2022-03-29 13:56:52.800834] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-29 13:56:52.809644] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:52.811961] INFO: moduleinvoker: dropnan.v1 运行完成[0.011138s].
[2022-03-29 13:56:52.825059] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2022-03-29 13:56:52.847331] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:53.009998] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[0.184934s].
[2022-03-29 13:56:53.016834] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-29 13:56:53.027193] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:53.029630] INFO: moduleinvoker: instruments.v2 运行完成[0.012805s].
[2022-03-29 13:56:53.048284] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-29 13:56:53.060099] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:53.062411] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.014142s].
[2022-03-29 13:56:53.072023] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-29 13:56:53.084731] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:53.087045] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.015005s].
[2022-03-29 13:56:53.097530] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-29 13:56:53.107295] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:53.109858] INFO: moduleinvoker: dropnan.v1 运行完成[0.012291s].
[2022-03-29 13:56:53.124508] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-03-29 13:56:53.140540] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:53.144100] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.019565s].
[2022-03-29 13:56:53.149710] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-29 13:56:53.156131] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:53.157474] INFO: moduleinvoker: instruments.v2 运行完成[0.007764s].
[2022-03-29 13:56:53.166011] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-03-29 13:56:53.171899] INFO: moduleinvoker: 命中缓存
[2022-03-29 13:56:53.173218] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.007208s].
[2022-03-29 13:56:53.176731] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-03-29 13:56:53.219036] INFO: moduleinvoker: input_features.v1 运行完成[0.042289s].
[2022-03-29 13:56:53.237846] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-29 13:56:55.483462] INFO: 基础特征抽取: 年份 2017, 特征行数=193398
[2022-03-29 13:56:59.266368] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2022-03-29 13:57:02.908635] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2022-03-29 13:57:06.756151] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2022-03-29 13:57:06.943607] INFO: 基础特征抽取: 总行数: 2841213
[2022-03-29 13:57:06.954796] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[13.716971s].
[2022-03-29 13:57:06.962680] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-29 13:57:12.763174] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.008s
[2022-03-29 13:57:12.772258] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.008s
[2022-03-29 13:57:12.778270] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.005s
[2022-03-29 13:57:12.783978] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.004s
[2022-03-29 13:57:12.789681] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.004s
[2022-03-29 13:57:12.795598] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.004s
[2022-03-29 13:57:13.441544] INFO: derived_feature_extractor: /y_2017, 193398
[2022-03-29 13:57:15.171173] INFO: derived_feature_extractor: /y_2018, 816987
[2022-03-29 13:57:17.362935] INFO: derived_feature_extractor: /y_2019, 884867
[2022-03-29 13:57:19.733879] INFO: derived_feature_extractor: /y_2020, 945961
[2022-03-29 13:57:20.592729] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[13.630028s].
[2022-03-29 13:57:20.607251] INFO: moduleinvoker: join.v3 开始运行..
[2022-03-29 13:57:26.366970] INFO: join: /y_2017, 行数=0/193398, 耗时=1.216723s
[2022-03-29 13:57:29.734982] INFO: join: /y_2018, 行数=813508/816987, 耗时=3.365157s
[2022-03-29 13:57:33.295104] INFO: join: /y_2019, 行数=881288/884867, 耗时=3.552853s
[2022-03-29 13:57:37.156246] INFO: join: /y_2020, 行数=919362/945961, 耗时=3.853361s
[2022-03-29 13:57:37.312554] INFO: join: 最终行数: 2614158
[2022-03-29 13:57:37.336050] INFO: moduleinvoker: join.v3 运行完成[16.728801s].
[2022-03-29 13:57:37.344764] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-29 13:57:37.451236] INFO: dropnan: /y_2017, 0/0
[2022-03-29 13:57:39.138287] INFO: dropnan: /y_2018, 786396/813508
[2022-03-29 13:57:40.635813] INFO: dropnan: /y_2019, 838085/881288
[2022-03-29 13:57:42.232292] INFO: dropnan: /y_2020, 855171/919362
[2022-03-29 13:57:42.361225] INFO: dropnan: 行数: 2479652/2614158
[2022-03-29 13:57:42.373935] INFO: moduleinvoker: dropnan.v1 运行完成[5.029166s].
[2022-03-29 13:57:42.397632] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2022-03-29 13:57:45.312485] INFO: StockRanker: 特征预处理 ..
[2022-03-29 13:57:49.005760] INFO: StockRanker: prepare data: training ..
[2022-03-29 13:57:52.712137] INFO: StockRanker: sort ..
[2022-03-29 13:58:22.071269] INFO: StockRanker训练: 25c71496 准备训练: 2479652 行数
[2022-03-29 13:58:22.386552] INFO: StockRanker训练: 正在训练 ..
[2022-03-29 14:06:54.241269] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[551.843633s].
[2022-03-29 14:06:54.247422] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-29 14:06:54.266907] INFO: moduleinvoker: 命中缓存
[2022-03-29 14:06:54.269023] INFO: moduleinvoker: instruments.v2 运行完成[0.021616s].
[2022-03-29 14:06:54.290210] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-29 14:06:56.917998] INFO: 基础特征抽取: 年份 2020, 特征行数=243745
[2022-03-29 14:07:01.539406] INFO: 基础特征抽取: 年份 2021, 特征行数=1061527
[2022-03-29 14:07:01.639713] INFO: 基础特征抽取: 总行数: 1305272
[2022-03-29 14:07:01.648557] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[7.358359s].
[2022-03-29 14:07:01.658914] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-29 14:07:04.238004] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.004s
[2022-03-29 14:07:04.243897] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.004s
[2022-03-29 14:07:04.248197] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.003s
[2022-03-29 14:07:04.252300] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.003s
[2022-03-29 14:07:04.256352] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.003s
[2022-03-29 14:07:04.260335] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.002s
[2022-03-29 14:07:04.888655] INFO: derived_feature_extractor: /y_2020, 243745
[2022-03-29 14:07:07.090443] INFO: derived_feature_extractor: /y_2021, 1061527
[2022-03-29 14:07:07.980075] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[6.321159s].
[2022-03-29 14:07:07.990571] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-29 14:07:08.419641] INFO: dropnan: /y_2020, 218004/243745
[2022-03-29 14:07:09.962234] INFO: dropnan: /y_2021, 900960/1061527
[2022-03-29 14:07:10.057643] INFO: dropnan: 行数: 1118964/1305272
[2022-03-29 14:07:10.070809] INFO: moduleinvoker: dropnan.v1 运行完成[2.080234s].
[2022-03-29 14:07:10.080434] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-03-29 14:07:10.414419] INFO: StockRanker预测: /y_2020 ..
[2022-03-29 14:07:11.475446] INFO: StockRanker预测: /y_2021 ..
[2022-03-29 14:07:14.525460] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[4.445026s].
[2022-03-29 14:07:14.542789] INFO: moduleinvoker: cached.v3 开始运行..
[2022-03-29 14:07:17.229048] INFO: moduleinvoker: cached.v3 运行完成[2.686267s].
[2022-03-29 14:07:18.981357] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-03-29 14:07:18.986999] INFO: backtest: biglearning backtest:V8.6.2
[2022-03-29 14:07:18.988552] INFO: backtest: product_type:stock by specified
[2022-03-29 14:07:19.057082] INFO: moduleinvoker: cached.v2 开始运行..
[2022-03-29 14:07:19.067654] INFO: moduleinvoker: 命中缓存
[2022-03-29 14:07:19.069417] INFO: moduleinvoker: cached.v2 运行完成[0.012352s].
[2022-03-29 14:07:21.353862] INFO: algo: TradingAlgorithm V1.8.7
[2022-03-29 14:07:22.473814] INFO: algo: trading transform...
[2022-03-29 14:07:25.961850] INFO: algo: handle_splits get splits [dt:2021-05-21 00:00:00+00:00] [asset:Equity(4096 [688060.SHA]), ratio:0.9935547709465027]
[2022-03-29 14:07:25.963780] INFO: Position: position stock handle split[sid:4096, orig_amount:1300, new_amount:1308.0, orig_cost:57.84038339888179, new_cost:57.4676, ratio:0.9935547709465027, last_sale_price:57.03997802734375]
[2022-03-29 14:07:25.965529] INFO: Position: after split: PositionStock(asset:Equity(4096 [688060.SHA]), amount:1308.0, cost_basis:57.4676, last_sale_price:57.40999984741211)
[2022-03-29 14:07:25.966981] INFO: Position: returning cash: 24.7069
[2022-03-29 14:07:26.024994] INFO: algo: handle_splits get splits [dt:2021-05-25 00:00:00+00:00] [asset:Equity(1684 [300342.SZA]), ratio:0.9861623644828796]
[2022-03-29 14:07:26.026985] INFO: Position: position stock handle split[sid:1684, orig_amount:2600, new_amount:2636.0, orig_cost:10.900000766396237, new_cost:10.7492, ratio:0.9861623644828796, last_sale_price:10.690001487731934]
[2022-03-29 14:07:26.028332] INFO: Position: after split: PositionStock(asset:Equity(1684 [300342.SZA]), amount:2636.0, cost_basis:10.7492, last_sale_price:10.840001106262207)
[2022-03-29 14:07:26.029494] INFO: Position: returning cash: 5.1599
[2022-03-29 14:07:26.121752] INFO: algo: handle_splits get splits [dt:2021-05-28 00:00:00+00:00] [asset:Equity(3344 [300462.SZA]), ratio:0.9876540899276733]
[2022-03-29 14:07:26.123386] INFO: Position: position stock handle split[sid:3344, orig_amount:15000, new_amount:15187.0, orig_cost:11.580004781748176, new_cost:11.437, ratio:0.9876540899276733, last_sale_price:11.999998092651367]
[2022-03-29 14:07:26.124782] INFO: Position: after split: PositionStock(asset:Equity(3344 [300462.SZA]), amount:15187.0, cost_basis:11.437, last_sale_price:12.15000057220459)
[2022-03-29 14:07:26.125885] INFO: Position: returning cash: 6.0426
[2022-03-29 14:07:26.275653] INFO: algo: handle_splits get splits [dt:2021-06-04 00:00:00+00:00] [asset:Equity(2127 [300107.SZA]), ratio:0.9817518591880798]
[2022-03-29 14:07:26.333354] INFO: algo: handle_splits get splits [dt:2021-06-08 00:00:00+00:00] [asset:Equity(591 [300833.SZA]), ratio:0.9923853874206543]
[2022-03-29 14:07:26.335002] INFO: algo: handle_splits get splits [dt:2021-06-08 00:00:00+00:00] [asset:Equity(1557 [002730.SZA]), ratio:0.9940072894096375]
[2022-03-29 14:07:26.630472] INFO: algo: handle_splits get splits [dt:2021-06-24 00:00:00+00:00] [asset:Equity(243 [300165.SZA]), ratio:0.9979838132858276]
[2022-03-29 14:07:26.632106] INFO: Position: position stock handle split[sid:243, orig_amount:8400, new_amount:8416.0, orig_cost:5.040000305177693, new_cost:5.0298, ratio:0.9979838132858276, last_sale_price:4.950000286102295]
[2022-03-29 14:07:26.633470] INFO: Position: after split: PositionStock(asset:Equity(243 [300165.SZA]), amount:8416.0, cost_basis:5.0298, last_sale_price:4.960000514984131)
[2022-03-29 14:07:26.634781] INFO: Position: returning cash: 4.8024
[2022-03-29 14:07:30.351415] INFO: Performance: Simulated 243 trading days out of 243.
[2022-03-29 14:07:30.352928] INFO: Performance: first open: 2021-01-04 09:30:00+00:00
[2022-03-29 14:07:30.354321] INFO: Performance: last close: 2021-12-31 15:00:00+00:00
[2022-03-29 14:07:33.928777] INFO: moduleinvoker: backtest.v8 运行完成[14.947415s].
[2022-03-29 14:07:33.930407] INFO: moduleinvoker: trade.v4 运行完成[16.691377s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-85f2aad68eac421d831237db4899186f"}/bigcharts-data-end
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-8178acc2fad842b7bb969d18d2c08a13"}/bigcharts-data-end
- 收益率61.72%
- 年化收益率64.62%
- 基准收益率-5.2%
- 阿尔法0.7
- 贝塔0.37
- 夏普比率1.92
- 胜率0.52
- 盈亏比1.42
- 收益波动率26.28%
- 信息比率0.13
- 最大回撤12.74%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-cbf1952c063744ac8b7ad20707a31375"}/bigcharts-data-end