克隆策略

双均线策略+移动止损

    {"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-50:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-57:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-50:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-102:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-102:options_data","SourceOutputPortId":"-86:data"},{"DestinationInputPortId":"-57:input_data","SourceOutputPortId":"-50:data"},{"DestinationInputPortId":"-86:input_data","SourceOutputPortId":"-57:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nbuy_condition=where(mean(close_0,5)>mean(close_0,50),1,0)\nsell_condition=where(mean(close_0,5)<mean(close_0,50),1,0)","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2012-05-29","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2017-11-08","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"600519.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"-86","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-86"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-86","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-50","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"30","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-50"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-50"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-50","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-57","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-57"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-57"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-57","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-102","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n\n #------------------------------------------止损模块START--------------------------------------------\n date = data.current_dt.strftime('%Y-%m-%d') \n equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n \n # 新建当日止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n current_stoploss_stock = [] \n if len(equities) > 0:\n for i in equities.keys():\n stock_market_price = data.current(context.symbol(i), 'price') # 最新市场价格\n last_sale_date = equities[i].last_sale_date # 上次交易日期\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days # 持仓天数\n # 建仓以来的最高价\n highest_price_since_buy = data.history(context.symbol(i), 'high', hold_days, '1d').max()\n # 确定止损位置\n stoploss_line = highest_price_since_buy - highest_price_since_buy * 0.1\n record('止损位置', stoploss_line)\n # 如果价格下穿止损位置\n if stock_market_price < stoploss_line:\n context.order_target_percent(context.symbol(i), 0) \n current_stoploss_stock.append(i)\n print('日期:', date , '股票:', i, '出现止损状况')\n #-------------------------------------------止损模块END--------------------------------------------------\n\n \n # 获取今日的日期\n today = data.current_dt.strftime('%Y-%m-%d') \n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 记录用于买入股票的可用现金,因为是早盘卖股票,需要记录卖出的股票市值并在买入下单前更新可用现金;\n # 如果是早盘买尾盘卖,则卖出时不需更新可用现金,因为尾盘卖出股票所得现金无法使用\n cash_for_buy = context.portfolio.cash \n \n try:\n buy_stock = context.daily_stock_buy[today] # 当日符合买入条件的股票\n except:\n buy_stock=[] # 如果没有符合条件的股票,就设置为空\n \n try:\n sell_stock = context.daily_stock_sell[today] # 当日符合卖出条件的股票\n except:\n sell_stock=[] # 如果没有符合条件的股票,就设置为空\n \n # 需要卖出的股票:已有持仓中符合卖出条件的股票\n stock_to_sell = [ i for i in stock_hold_now if i in sell_stock ]\n # 需要买入的股票:没有持仓且符合买入条件的股票\n stock_to_buy = [ i for i in buy_stock if i not in stock_hold_now ] \n # 需要调仓的股票:已有持仓且不符合卖出条件的股票\n stock_to_adjust=[ i for i in stock_hold_now if i not in sell_stock ]\n \n # 如果有卖出信号\n if len(stock_to_sell)>0:\n for instrument in stock_to_sell:\n if instrument in current_stoploss_stock:\n continue\n sid = context.symbol(instrument) # 将标的转化为equity格式\n cur_position = context.portfolio.positions[sid].amount # 持仓\n if cur_position > 0 and data.can_trade(sid):\n context.order_target_percent(sid, 0) # 全部卖出 \n # 因为设置的是早盘卖出早盘买入,需要根据卖出的股票更新可用现金;如果设置尾盘卖出早盘买入,则不需更新可用现金(可以删除下面的语句)\n cash_for_buy += stock_hold_now[instrument]\n \n # 如果有买入信号/有持仓\n if len(stock_to_buy)>0:\n weight = 1/len(set(stock_to_buy+stock_to_adjust)) # 每只股票的比重为等资金比例持有\n for instrument in set(stock_to_buy+stock_to_adjust):\n sid = context.symbol(instrument) # 将标的转化为equity格式\n if data.can_trade(sid):\n context.order_target_value(sid, weight*cash_for_buy) # 买入","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n df = context.options['data'].read_df()\n\n # 函数:求满足开仓条件的股票列表\n def open_pos_con(df):\n return list(df[df['buy_condition']>0].instrument)\n\n # 函数:求满足平仓条件的股票列表\n def close_pos_con(df):\n return list(df[df['sell_condition']>0].instrument)\n\n # 每日买入股票的数据框\n context.daily_stock_buy= df.groupby('date').apply(open_pos_con)\n # 每日卖出股票的数据框\n context.daily_stock_sell= df.groupby('date').apply(close_pos_con)","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":"1000000","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-102"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-102"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-102"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-102"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-102"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-102","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,20,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1073,124,200,200'/><NodePosition Node='-86' Position='1078,418,200,200'/><NodePosition Node='-50' Position='1078,232,200,200'/><NodePosition Node='-57' Position='1076,327,200,200'/><NodePosition Node='-102' Position='1048,529,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
    In [12]:
    # 本代码由可视化策略环境自动生成 2019年1月24日 10:29
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m3_handle_data_bigquant_run(context, data):
    
        #------------------------------------------止损模块START--------------------------------------------
        date = data.current_dt.strftime('%Y-%m-%d')  
        equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}
        
        # 新建当日止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断
        current_stoploss_stock = [] 
        if len(equities) > 0:
            for i in equities.keys():
                stock_market_price = data.current(context.symbol(i), 'price')  # 最新市场价格
                last_sale_date = equities[i].last_sale_date   # 上次交易日期
                delta_days = data.current_dt - last_sale_date  
                hold_days = delta_days.days # 持仓天数
                # 建仓以来的最高价
                highest_price_since_buy = data.history(context.symbol(i), 'high', hold_days, '1d').max()
                # 确定止损位置
                stoploss_line = highest_price_since_buy - highest_price_since_buy * 0.1
                record('止损位置', stoploss_line)
                # 如果价格下穿止损位置
                if stock_market_price < stoploss_line:
                    context.order_target_percent(context.symbol(i), 0)     
                    current_stoploss_stock.append(i)
                    print('日期:', date , '股票:', i, '出现止损状况')
        #-------------------------------------------止损模块END--------------------------------------------------
    
           
        # 获取今日的日期
        today = data.current_dt.strftime('%Y-%m-%d')  
        # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表
        stock_hold_now = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.portfolio.positions.items()}
    
        # 记录用于买入股票的可用现金,因为是早盘卖股票,需要记录卖出的股票市值并在买入下单前更新可用现金;
        # 如果是早盘买尾盘卖,则卖出时不需更新可用现金,因为尾盘卖出股票所得现金无法使用
        cash_for_buy = context.portfolio.cash    
        
        try:
            buy_stock = context.daily_stock_buy[today]  # 当日符合买入条件的股票
        except:
            buy_stock=[]  # 如果没有符合条件的股票,就设置为空
        
        try:
            sell_stock = context.daily_stock_sell[today]  # 当日符合卖出条件的股票
        except:
            sell_stock=[] # 如果没有符合条件的股票,就设置为空
        
        # 需要卖出的股票:已有持仓中符合卖出条件的股票
        stock_to_sell = [ i for i in stock_hold_now if i in sell_stock ]
        # 需要买入的股票:没有持仓且符合买入条件的股票
        stock_to_buy = [ i for i in buy_stock if i not in stock_hold_now ]  
        # 需要调仓的股票:已有持仓且不符合卖出条件的股票
        stock_to_adjust=[ i for i in stock_hold_now if i not in sell_stock ]
        
        # 如果有卖出信号
        if len(stock_to_sell)>0:
            for instrument in stock_to_sell:
                if instrument in current_stoploss_stock:
                    continue
                sid = context.symbol(instrument) # 将标的转化为equity格式
                cur_position = context.portfolio.positions[sid].amount # 持仓
                if cur_position > 0 and data.can_trade(sid):
                    context.order_target_percent(sid, 0) # 全部卖出 
                    # 因为设置的是早盘卖出早盘买入,需要根据卖出的股票更新可用现金;如果设置尾盘卖出早盘买入,则不需更新可用现金(可以删除下面的语句)
                    cash_for_buy += stock_hold_now[instrument]
        
        # 如果有买入信号/有持仓
        if len(stock_to_buy)>0:
            weight = 1/len(set(stock_to_buy+stock_to_adjust)) # 每只股票的比重为等资金比例持有
            for instrument in set(stock_to_buy+stock_to_adjust):
                sid = context.symbol(instrument) # 将标的转化为equity格式
                if  data.can_trade(sid):
                    context.order_target_value(sid, weight*cash_for_buy) # 买入
    # 回测引擎:准备数据,只执行一次
    def m3_prepare_bigquant_run(context):
        # 加载预测数据
        df = context.options['data'].read_df()
    
        # 函数:求满足开仓条件的股票列表
        def open_pos_con(df):
            return list(df[df['buy_condition']>0].instrument)
    
        # 函数:求满足平仓条件的股票列表
        def close_pos_con(df):
            return list(df[df['sell_condition']>0].instrument)
    
        # 每日买入股票的数据框
        context.daily_stock_buy= df.groupby('date').apply(open_pos_con)
        # 每日卖出股票的数据框
        context.daily_stock_sell= df.groupby('date').apply(close_pos_con)
    # 回测引擎:初始化函数,只执行一次
    def m3_initialize_bigquant_run(context):
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
    
    
    m1 = M.input_features.v1(
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    buy_condition=where(mean(close_0,5)>mean(close_0,50),1,0)
    sell_condition=where(mean(close_0,5)<mean(close_0,50),1,0)""",
        m_cached=False
    )
    
    m2 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2012-05-29'),
        end_date=T.live_run_param('trading_date', '2017-11-08'),
        market='CN_STOCK_A',
        instrument_list='600519.SHA',
        max_count=0
    )
    
    m7 = M.general_feature_extractor.v7(
        instruments=m2.data,
        features=m1.data,
        start_date='',
        end_date='',
        before_start_days=30
    )
    
    m8 = M.derived_feature_extractor.v3(
        input_data=m7.data,
        features=m1.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m6 = M.dropnan.v1(
        input_data=m8.data
    )
    
    m3 = M.trade.v4(
        instruments=m2.data,
        options_data=m6.data,
        start_date='',
        end_date='',
        handle_data=m3_handle_data_bigquant_run,
        prepare=m3_prepare_bigquant_run,
        initialize=m3_initialize_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='open',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='后复权',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark=''
    )
    
    [2019-01-24 10:28:38.829416] INFO: bigquant: input_features.v1 开始运行..
    [2019-01-24 10:28:38.835972] INFO: bigquant: input_features.v1 运行完成[0.006565s].
    [2019-01-24 10:28:38.838659] INFO: bigquant: instruments.v2 开始运行..
    [2019-01-24 10:28:38.842732] INFO: bigquant: 命中缓存
    [2019-01-24 10:28:38.843744] INFO: bigquant: instruments.v2 运行完成[0.005082s].
    [2019-01-24 10:28:38.849113] INFO: bigquant: general_feature_extractor.v7 开始运行..
    [2019-01-24 10:28:38.853107] INFO: bigquant: 命中缓存
    [2019-01-24 10:28:38.853925] INFO: bigquant: general_feature_extractor.v7 运行完成[0.004821s].
    [2019-01-24 10:28:38.856613] INFO: bigquant: derived_feature_extractor.v3 开始运行..
    [2019-01-24 10:28:38.934132] INFO: derived_feature_extractor: 提取完成 buy_condition=where(mean(close_0,5)>mean(close_0,50),1,0), 0.008s
    [2019-01-24 10:28:38.943099] INFO: derived_feature_extractor: 提取完成 sell_condition=where(mean(close_0,5)<mean(close_0,50),1,0), 0.008s
    [2019-01-24 10:28:38.963278] INFO: derived_feature_extractor: /y_2012, 165
    [2019-01-24 10:28:38.989117] INFO: derived_feature_extractor: /y_2013, 238
    [2019-01-24 10:28:39.025541] INFO: derived_feature_extractor: /y_2014, 245
    [2019-01-24 10:28:39.054356] INFO: derived_feature_extractor: /y_2015, 244
    [2019-01-24 10:28:39.082826] INFO: derived_feature_extractor: /y_2016, 244
    [2019-01-24 10:28:39.106189] INFO: derived_feature_extractor: /y_2017, 207
    [2019-01-24 10:28:39.155087] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.298437s].
    [2019-01-24 10:28:39.158915] INFO: bigquant: dropnan.v1 开始运行..
    [2019-01-24 10:28:39.240877] INFO: dropnan: /y_2012, 165/165
    [2019-01-24 10:28:39.268540] INFO: dropnan: /y_2013, 238/238
    [2019-01-24 10:28:39.298469] INFO: dropnan: /y_2014, 245/245
    [2019-01-24 10:28:39.341826] INFO: dropnan: /y_2015, 244/244
    [2019-01-24 10:28:39.388205] INFO: dropnan: /y_2016, 244/244
    [2019-01-24 10:28:39.436448] INFO: dropnan: /y_2017, 207/207
    [2019-01-24 10:28:39.451129] INFO: dropnan: 行数: 1343/1343
    [2019-01-24 10:28:39.454232] INFO: bigquant: dropnan.v1 运行完成[0.295272s].
    [2019-01-24 10:28:39.478837] INFO: bigquant: backtest.v8 开始运行..
    [2019-01-24 10:28:39.481688] INFO: bigquant: biglearning backtest:V8.1.6
    [2019-01-24 10:28:42.204641] INFO: bigquant: product_type:stock by specified
    [2019-01-24 10:28:53.958079] INFO: bigquant: 读取股票行情完成:1568
    [2019-01-24 10:28:54.006757] INFO: algo: TradingAlgorithm V1.4.2
    [2019-01-24 10:28:54.341509] INFO: algo: trading transform...
    日期: 2012-08-16 股票: 600519.SHA 出现止损状况
    日期: 2014-03-26 股票: 600519.SHA 出现止损状况
    日期: 2014-05-05 股票: 600519.SHA 出现止损状况
    日期: 2015-01-14 股票: 600519.SHA 出现止损状况
    日期: 2015-02-02 股票: 600519.SHA 出现止损状况
    日期: 2015-05-05 股票: 600519.SHA 出现止损状况
    日期: 2015-06-04 股票: 600519.SHA 出现止损状况
    日期: 2015-06-18 股票: 600519.SHA 出现止损状况
    [2019-01-24 10:29:01.727346] INFO: Performance: Simulated 1327 trading days out of 1327.
    [2019-01-24 10:29:01.729245] INFO: Performance: first open: 2012-05-29 09:30:00+00:00
    [2019-01-24 10:29:01.739814] INFO: Performance: last close: 2017-11-08 15:00:00+00:00
    
    • 收益率474.87%
    • 年化收益率39.39%
    • 基准收益率54.82%
    • 阿尔法0.3
    • 贝塔0.31
    • 夏普比率1.43
    • 胜率0.53
    • 盈亏比5.8
    • 收益波动率22.94%
    • 信息比率0.06
    • 最大回撤16.31%
    [2019-01-24 10:29:04.332712] INFO: bigquant: backtest.v8 运行完成[24.853869s].