{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-09-10","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n\n #------------------------------------------止损模块START---------------------------------#\n date = data.current_dt.strftime('%Y-%m-%d')\n positions = {e.symbol: p.cost_basis for e, p in context.portfolio.positions.items()}\n # 新建当日止赢股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n current_stoploss_stock = [] \n if len(positions) > 0:\n for i in positions.keys():\n stock_cost = positions[i] \n stock_market_price = data.current(context.symbol(i), 'price') \n # 下跌8%止损\n if stock_market_price/stock_cost <= 0.92: \n context.order_target_percent(context.symbol(i),0) \n current_stoploss_stock.append(i)\n print('日期:',date,'股票:',i,'出现停损状况')\n #-------------------------------------------止损模块END-------------------------------#\n \n \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n #-----------这里加入逻辑判断,如果止盈止损了就不再执行轮仓卖出------------\n if instrument in current_stoploss_stock:\n continue\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='638,561,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-215' Position='381,188,200,200'/><node_position Node='-222' Position='385,280,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='1037,751,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-09-17 15:53:01.748193] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-09-17 15:53:01.765677] INFO: moduleinvoker: 命中缓存
[2021-09-17 15:53:01.778902] INFO: moduleinvoker: instruments.v2 运行完成[0.030714s].
[2021-09-17 15:53:01.787893] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-09-17 15:53:01.800630] INFO: moduleinvoker: 命中缓存
[2021-09-17 15:53:01.803006] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.015117s].
[2021-09-17 15:53:01.807586] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-09-17 15:53:01.813838] INFO: moduleinvoker: 命中缓存
[2021-09-17 15:53:01.815293] INFO: moduleinvoker: input_features.v1 运行完成[0.007709s].
[2021-09-17 15:53:01.895727] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-09-17 15:53:05.926392] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2021-09-17 15:53:07.816319] INFO: 基础特征抽取: 年份 2019, 特征行数=0
[2021-09-17 15:53:07.883379] INFO: 基础特征抽取: 总行数: 816987
[2021-09-17 15:53:07.888588] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[5.992883s].
[2021-09-17 15:53:07.898466] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-09-17 15:53:10.585880] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.004s
[2021-09-17 15:53:10.590789] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.003s
[2021-09-17 15:53:10.594290] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.002s
[2021-09-17 15:53:10.597604] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.002s
[2021-09-17 15:53:10.600763] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.002s
[2021-09-17 15:53:10.603750] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.002s
[2021-09-17 15:53:13.228872] INFO: derived_feature_extractor: /y_2018, 816987
[2021-09-17 15:53:14.074502] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[6.176028s].
[2021-09-17 15:53:14.085295] INFO: moduleinvoker: join.v3 开始运行..
[2021-09-17 15:53:20.603227] INFO: join: /y_2018, 行数=795755/816987, 耗时=4.122739s
[2021-09-17 15:53:20.688313] INFO: join: 最终行数: 795755
[2021-09-17 15:53:20.713551] INFO: moduleinvoker: join.v3 运行完成[6.628249s].
[2021-09-17 15:53:20.727695] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-09-17 15:53:22.526937] INFO: dropnan: /y_2018, 794107/795755
[2021-09-17 15:53:22.589845] INFO: dropnan: 行数: 794107/795755
[2021-09-17 15:53:22.617494] INFO: moduleinvoker: dropnan.v1 运行完成[1.889795s].
[2021-09-17 15:53:22.628038] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2021-09-17 15:53:23.649407] INFO: StockRanker: 特征预处理 ..
[2021-09-17 15:53:24.842545] INFO: StockRanker: prepare data: training ..
[2021-09-17 15:53:26.172620] INFO: StockRanker: sort ..
[2021-09-17 15:53:36.217027] INFO: StockRanker训练: 54c037e0 准备训练: 794107 行数
[2021-09-17 15:53:36.419246] INFO: StockRanker训练: 正在训练 ..
[2021-09-17 15:57:17.489264] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[234.861228s].
[2021-09-17 15:57:17.495304] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-09-17 15:57:17.504687] INFO: moduleinvoker: 命中缓存
[2021-09-17 15:57:17.506613] INFO: moduleinvoker: instruments.v2 运行完成[0.011338s].
[2021-09-17 15:57:17.520565] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-09-17 15:57:21.144995] INFO: 基础特征抽取: 年份 2021, 特征行数=728320
[2021-09-17 15:57:21.202619] INFO: 基础特征抽取: 总行数: 728320
[2021-09-17 15:57:21.252028] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[3.7315s].
[2021-09-17 15:57:21.259978] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-09-17 15:57:23.929214] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.003s
[2021-09-17 15:57:23.933658] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.003s
[2021-09-17 15:57:23.937678] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.002s
[2021-09-17 15:57:23.972527] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.033s
[2021-09-17 15:57:23.976412] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.002s
[2021-09-17 15:57:23.979497] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.002s
[2021-09-17 15:57:26.624440] INFO: derived_feature_extractor: /y_2021, 728320
[2021-09-17 15:57:27.443646] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[6.183657s].
[2021-09-17 15:57:27.451937] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-09-17 15:57:28.842786] INFO: dropnan: /y_2021, 720839/728320
[2021-09-17 15:57:28.910360] INFO: dropnan: 行数: 720839/728320
[2021-09-17 15:57:28.941959] INFO: moduleinvoker: dropnan.v1 运行完成[1.490006s].
[2021-09-17 15:57:28.954098] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2021-09-17 15:57:31.822099] INFO: StockRanker预测: /y_2021 ..
[2021-09-17 15:57:38.939289] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[9.985194s].
[2021-09-17 15:57:40.752656] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-09-17 15:57:40.758470] INFO: backtest: biglearning backtest:V8.5.0
[2021-09-17 15:57:40.759907] INFO: backtest: product_type:stock by specified
[2021-09-17 15:57:41.258638] INFO: moduleinvoker: cached.v2 开始运行..
[2021-09-17 15:57:52.407925] INFO: backtest: 读取股票行情完成:1808020
[2021-09-17 15:57:58.270607] INFO: moduleinvoker: cached.v2 运行完成[17.011985s].
[2021-09-17 15:58:01.047809] INFO: algo: TradingAlgorithm V1.8.5
[2021-09-17 15:58:01.918963] INFO: algo: trading transform...
[2021-09-17 15:58:07.314945] INFO: Performance: Simulated 170 trading days out of 170.
[2021-09-17 15:58:07.316462] INFO: Performance: first open: 2021-01-04 09:30:00+00:00
[2021-09-17 15:58:07.317626] INFO: Performance: last close: 2021-09-10 15:00:00+00:00
[2021-09-17 15:58:12.599955] INFO: moduleinvoker: backtest.v8 运行完成[31.847299s].
[2021-09-17 15:58:12.601579] INFO: moduleinvoker: trade.v4 运行完成[33.65257s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-5e04f524e66142888f442360e8a8a97d"}/bigcharts-data-end
日期: 2021-01-07 股票: 603332.SHA 出现停损状况
日期: 2021-01-07 股票: 600890.SHA 出现停损状况
日期: 2021-01-08 股票: 002765.SZA 出现停损状况
日期: 2021-01-11 股票: 688218.SHA 出现停损状况
日期: 2021-01-11 股票: 000690.SZA 出现停损状况
日期: 2021-01-11 股票: 688310.SHA 出现停损状况
日期: 2021-01-11 股票: 603900.SHA 出现停损状况
日期: 2021-01-11 股票: 000802.SZA 出现停损状况
日期: 2021-01-13 股票: 603655.SHA 出现停损状况
日期: 2021-01-13 股票: 300819.SZA 出现停损状况
日期: 2021-01-22 股票: 688529.SHA 出现停损状况
日期: 2021-01-27 股票: 000813.SZA 出现停损状况
日期: 2021-01-28 股票: 600319.SHA 出现停损状况
日期: 2021-02-03 股票: 000521.SZA 出现停损状况
日期: 2021-02-04 股票: 300546.SZA 出现停损状况
日期: 2021-02-04 股票: 001896.SZA 出现停损状况
日期: 2021-02-04 股票: 300312.SZA 出现停损状况
日期: 2021-02-05 股票: 001896.SZA 出现停损状况
日期: 2021-02-05 股票: 300767.SZA 出现停损状况
日期: 2021-02-05 股票: 600405.SHA 出现停损状况
日期: 2021-02-08 股票: 000566.SZA 出现停损状况
日期: 2021-02-08 股票: 600766.SHA 出现停损状况
日期: 2021-03-08 股票: 688017.SHA 出现停损状况
日期: 2021-03-18 股票: 600701.SHA 出现停损状况
日期: 2021-03-19 股票: 600701.SHA 出现停损状况
日期: 2021-03-22 股票: 600701.SHA 出现停损状况
日期: 2021-03-23 股票: 600701.SHA 出现停损状况
日期: 2021-03-24 股票: 600701.SHA 出现停损状况
日期: 2021-03-24 股票: 600409.SHA 出现停损状况
日期: 2021-03-25 股票: 600701.SHA 出现停损状况
日期: 2021-03-26 股票: 600701.SHA 出现停损状况
日期: 2021-03-29 股票: 600701.SHA 出现停损状况
日期: 2021-03-30 股票: 600701.SHA 出现停损状况
日期: 2021-03-31 股票: 600701.SHA 出现停损状况
日期: 2021-04-01 股票: 600701.SHA 出现停损状况
日期: 2021-04-12 股票: 300677.SZA 出现停损状况
日期: 2021-04-28 股票: 603079.SHA 出现停损状况
日期: 2021-05-17 股票: 300202.SZA 出现停损状况
日期: 2021-05-18 股票: 000525.SZA 出现停损状况
日期: 2021-05-18 股票: 000606.SZA 出现停损状况
日期: 2021-05-19 股票: 000525.SZA 出现停损状况
日期: 2021-05-20 股票: 000673.SZA 出现停损状况
日期: 2021-05-21 股票: 002464.SZA 出现停损状况
日期: 2021-06-15 股票: 000760.SZA 出现停损状况
日期: 2021-06-16 股票: 000760.SZA 出现停损状况
日期: 2021-06-17 股票: 000760.SZA 出现停损状况
日期: 2021-06-18 股票: 000760.SZA 出现停损状况
日期: 2021-06-21 股票: 000760.SZA 出现停损状况
日期: 2021-06-22 股票: 000760.SZA 出现停损状况
日期: 2021-06-23 股票: 000760.SZA 出现停损状况
日期: 2021-06-24 股票: 000760.SZA 出现停损状况
日期: 2021-06-25 股票: 000760.SZA 出现停损状况
日期: 2021-06-28 股票: 000760.SZA 出现停损状况
日期: 2021-06-29 股票: 000760.SZA 出现停损状况
日期: 2021-06-29 股票: 688386.SHA 出现停损状况
日期: 2021-06-30 股票: 000760.SZA 出现停损状况
日期: 2021-07-01 股票: 000760.SZA 出现停损状况
日期: 2021-07-01 股票: 300148.SZA 出现停损状况
日期: 2021-07-02 股票: 000760.SZA 出现停损状况
日期: 2021-07-06 股票: 000615.SZA 出现停损状况
日期: 2021-07-08 股票: 688613.SHA 出现停损状况
日期: 2021-07-16 股票: 300246.SZA 出现停损状况
日期: 2021-07-27 股票: 300143.SZA 出现停损状况
日期: 2021-08-20 股票: 603486.SHA 出现停损状况
日期: 2021-08-31 股票: 603829.SHA 出现停损状况
- 收益率21.01%
- 年化收益率32.66%
- 基准收益率-3.79%
- 阿尔法0.34
- 贝塔0.27
- 夏普比率1.28
- 胜率0.53
- 盈亏比1.21
- 收益波动率21.63%
- 信息比率0.08
- 最大回撤11.23%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-793ce127295b4378afb600439f5e9efb"}/bigcharts-data-end