本文主要从 模型训练-模型保存-模型调用三个流程完整讲解如何使用Xgboost模型进行AI策略开发
# 本代码由可视化策略环境自动生成 2021年12月11日 17:17
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
# 回测引擎:初始化函数,只执行一次
def m19_initialize_bigquant_run(context):
# 加载预测数据
context.ranker_prediction = context.options['data'].read_df()
# 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
# 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
# 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
stock_count = 5
# 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
# 设置每只股票占用的最大资金比例
context.max_cash_per_instrument = 0.2
context.options['hold_days'] = 5
# 回测引擎:每日数据处理函数,每天执行一次
def m19_handle_data_bigquant_run(context, data):
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
# 1. 资金分配
# 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
# 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
positions = {e.symbol: p.amount * p.last_sale_price
for e, p in context.perf_tracker.position_tracker.positions.items()}
# 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
if not is_staging and cash_for_sell > 0:
equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
# print('rank order for sell %s' % instruments)
for instrument in instruments:
context.order_target(context.symbol(instrument), 0)
cash_for_sell -= positions[instrument]
if cash_for_sell <= 0:
break
# 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
buy_cash_weights = context.stock_weights
buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
for i, instrument in enumerate(buy_instruments):
cash = cash_for_buy * buy_cash_weights[i]
if cash > max_cash_per_instrument - positions.get(instrument, 0):
# 确保股票持仓量不会超过每次股票最大的占用资金量
cash = max_cash_per_instrument - positions.get(instrument, 0)
if cash > 0:
context.order_value(context.symbol(instrument), cash)
# 回测引擎:准备数据,只执行一次
def m19_prepare_bigquant_run(context):
pass
m1 = M.instruments.v2(
start_date='2010-01-01',
end_date='2015-01-01',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m2 = M.advanced_auto_labeler.v2(
instruments=m1.data,
label_expr="""# #号开始的表示注释
# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
# 添加benchmark_前缀,可使用对应的benchmark数据
# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
shift(close, -5) / shift(open, -1)
# 极值处理:用1%和99%分位的值做clip
clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
# 将分数映射到分类,这里使用20个分类
all_wbins(label, 20)
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
where(shift(high, -1) == shift(low, -1), NaN, label)
""",
start_date='',
end_date='',
benchmark='000300.SHA',
drop_na_label=True,
cast_label_int=True
)
m3 = M.input_features.v1(
features="""# #号开始的表示注释
# 多个特征,每行一个,可以包含基础特征和衍生特征
return_5
return_10
return_20
avg_amount_0/avg_amount_5
avg_amount_5/avg_amount_20
rank_avg_amount_0/rank_avg_amount_5
rank_avg_amount_5/rank_avg_amount_10
rank_return_0
rank_return_5
rank_return_10
rank_return_0/rank_return_5
rank_return_5/rank_return_10
pe_ttm_0
"""
)
m15 = M.general_feature_extractor.v7(
instruments=m1.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=0
)
m16 = M.derived_feature_extractor.v3(
input_data=m15.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False
)
m7 = M.join.v3(
data1=m2.data,
data2=m16.data,
on='date,instrument',
how='inner',
sort=False
)
m13 = M.dropnan.v1(
input_data=m7.data
)
m9 = M.instruments.v2(
start_date=T.live_run_param('trading_date', '2015-01-01'),
end_date=T.live_run_param('trading_date', '2017-01-01'),
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m17 = M.general_feature_extractor.v7(
instruments=m9.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=0
)
m18 = M.derived_feature_extractor.v3(
input_data=m17.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False
)
m14 = M.dropnan.v1(
input_data=m18.data
)
m20 = M.xgboost.v1(
training_ds=m13.data,
features=m3.data,
predict_ds=m14.data,
num_boost_round=30,
objective='排序(pairwise)',
booster='gbtree',
max_depth=6,
key_cols='date,instrument',
group_col='date',
nthread=1,
n_gpus=-1,
other_train_parameters={}
)
m19 = M.trade.v4(
instruments=m9.data,
options_data=m20.predictions,
start_date='',
end_date='',
initialize=m19_initialize_bigquant_run,
handle_data=m19_handle_data_bigquant_run,
prepare=m19_prepare_bigquant_run,
volume_limit=0.025,
order_price_field_buy='open',
order_price_field_sell='close',
capital_base=1000000,
auto_cancel_non_tradable_orders=True,
data_frequency='daily',
price_type='后复权',
product_type='股票',
plot_charts=True,
backtest_only=False,
benchmark='000300.SHA'
)
[2021-12-11 17:01:11.895148] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-11 17:01:11.916463] INFO: moduleinvoker: 命中缓存
[2021-12-11 17:01:11.918145] INFO: moduleinvoker: instruments.v2 运行完成[0.023021s].
[2021-12-11 17:01:11.930924] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-12-11 17:01:11.944282] INFO: moduleinvoker: 命中缓存
[2021-12-11 17:01:11.949054] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.018129s].
[2021-12-11 17:01:11.960063] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-11 17:01:12.000015] INFO: moduleinvoker: 命中缓存
[2021-12-11 17:01:12.001769] INFO: moduleinvoker: input_features.v1 运行完成[0.041715s].
[2021-12-11 17:01:12.022316] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-11 17:01:12.032798] INFO: moduleinvoker: 命中缓存
[2021-12-11 17:01:12.034286] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.011998s].
[2021-12-11 17:01:12.047849] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-11 17:01:12.062040] INFO: moduleinvoker: 命中缓存
[2021-12-11 17:01:12.063939] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.016089s].
[2021-12-11 17:01:12.086899] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-11 17:01:12.101518] INFO: moduleinvoker: 命中缓存
[2021-12-11 17:01:12.104275] INFO: moduleinvoker: join.v3 运行完成[0.017432s].
[2021-12-11 17:01:12.126958] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-12-11 17:01:12.142355] INFO: moduleinvoker: 命中缓存
[2021-12-11 17:01:12.144708] INFO: moduleinvoker: dropnan.v1 运行完成[0.017756s].
[2021-12-11 17:01:12.150851] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-11 17:01:12.162365] INFO: moduleinvoker: 命中缓存
[2021-12-11 17:01:12.164129] INFO: moduleinvoker: instruments.v2 运行完成[0.013286s].
[2021-12-11 17:01:12.176612] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-11 17:01:15.817860] INFO: 基础特征抽取: 年份 2015, 特征行数=569698
[2021-12-11 17:01:19.491398] INFO: 基础特征抽取: 年份 2016, 特征行数=641546
[2021-12-11 17:01:21.426157] INFO: 基础特征抽取: 年份 2017, 特征行数=0
[2021-12-11 17:01:21.521232] INFO: 基础特征抽取: 总行数: 1211244
[2021-12-11 17:01:21.526342] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[9.349747s].
[2021-12-11 17:01:21.533223] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-11 17:01:23.720103] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.005s
[2021-12-11 17:01:23.725806] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.004s
[2021-12-11 17:01:23.730033] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.003s
[2021-12-11 17:01:23.733911] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.003s
[2021-12-11 17:01:23.737809] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.003s
[2021-12-11 17:01:23.742061] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.003s
[2021-12-11 17:01:24.840759] INFO: derived_feature_extractor: /y_2015, 569698
[2021-12-11 17:01:26.373523] INFO: derived_feature_extractor: /y_2016, 641546
[2021-12-11 17:01:26.904860] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[5.37162s].
[2021-12-11 17:01:26.914410] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-12-11 17:01:27.700984] INFO: dropnan: /y_2015, 565146/569698
[2021-12-11 17:01:28.549920] INFO: dropnan: /y_2016, 636912/641546
[2021-12-11 17:01:28.652515] INFO: dropnan: 行数: 1202058/1211244
[2021-12-11 17:01:28.663127] INFO: moduleinvoker: dropnan.v1 运行完成[1.748712s].
[2021-12-11 17:01:28.684180] INFO: moduleinvoker: xgboost.v1 开始运行..
[2021-12-11 17:10:03.996946] INFO: moduleinvoker: xgboost.v1 运行完成[515.312743s].
[2021-12-11 17:10:06.626183] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-12-11 17:10:06.633161] INFO: backtest: biglearning backtest:V8.6.0
[2021-12-11 17:10:06.635719] INFO: backtest: product_type:stock by specified
[2021-12-11 17:10:06.769895] INFO: moduleinvoker: cached.v2 开始运行..
[2021-12-11 17:10:06.783999] INFO: moduleinvoker: 命中缓存
[2021-12-11 17:10:06.786976] INFO: moduleinvoker: cached.v2 运行完成[0.017111s].
[2021-12-11 17:10:09.006282] INFO: algo: TradingAlgorithm V1.8.6
[2021-12-11 17:10:10.198590] INFO: algo: trading transform...
[2021-12-11 17:10:28.573781] INFO: Performance: Simulated 488 trading days out of 488.
[2021-12-11 17:10:28.575863] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2021-12-11 17:10:28.577900] INFO: Performance: last close: 2016-12-30 15:00:00+00:00
[2021-12-11 17:10:35.736990] INFO: moduleinvoker: backtest.v8 运行完成[29.110824s].
[2021-12-11 17:10:35.738558] INFO: moduleinvoker: trade.v4 运行完成[31.718278s].
import xgboost as xgb
def prepare_data(df, features, group_col):
if group_col:
df.sort_values(group_col, inplace=True)
try:
data = df[features].values
if 'label' in df.columns:
label = df['label'].values
else:
label = None
dm = xgb.DMatrix(data, label=label)
if group_col:
dm.set_group(list(df.groupby(group_col).apply(len)))
dm.feature_names = features
return dm
except KeyError as e:
log.error('部分特征没有在数据中,执行失败')
raise e
# 保存模型
pd.to_pickle(m20.output_model.read(), 'xgboost.csv')
model_info = pd.read_pickle('xgboost.csv')
features = model_info['features']
parameters = model_info['parameters']
model = model_info['model']
df = m14.data.read() # 样本外数据
group_col = 'date'
outsample_data = prepare_data(df, features, group_col)
# 预测结果
pred_label = model.predict(outsample_data)
pred_df = pd.DataFrame(
data={'prediction': pred_label}, index=df.index)
# 通过两种方式比较预测结果是否一致
a = m20.predictions.read().sort_values(['date','instrument']) # 可视化模块的预测结果
df['pred'] = pred_df
b = df[['pred','date','instrument']] # 源码预测结果
print(a[a['instrument'] =='600000.SHA'].head(50).head(1)) # 随便查看某只股票某天的预测数据是否一致
print(b[b['instrument'] =='600000.SHA'].head(50).head(1))
# 查看保存的模型信息
model_info