{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"-733:input_data","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-1003:input_data","from_node_id":"-238:data"},{"to_node_id":"-987:input_ds","from_node_id":"-733:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-987:sorted_data"},{"to_node_id":"-1009:input_ds","from_node_id":"-1003:data"},{"to_node_id":"-86:input_data","from_node_id":"-1009:sorted_data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-12-30","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -100) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\n#return_5\n#pe_ttm_0\n\n#high_0/adjust_factor_0\n#low_0/adjust_factor_0\n\n#timeperiod移动平均线\n#zhouma34=ta_ma(close_0, timeperiod=166)/adjust_factor_0\nzhouma34=ta_ma(close_0, timeperiod=166)\n#timeperiod移动平均线\nzhouma55=ta_ma(close_0, timeperiod=258)\nisup=zhouma34/zhouma55\nsy=shift(close_0, -100)/shift(open_0, -1)\n\n#ts_max(high_0,10)/adjust_factor_0\n#ts_min(low_0,10)/adjust_factor_0\n\nts_argmax(high_0, 258*5)\n#4年高点,1年按258个交易日算\nisgaodian=where(ts_argmax(high_0, 258*5)<500.0,1,0)\n\n#1年低点,1年按258个交易日算\nts_argmin(low_0, 258*1)\nisdidian=where(ts_argmin(low_0, 258*1)<100.0,1,0)\n\n#半年高点,1年按258个交易日算\nisbanniangaodian=where(ts_argmax(high_0, 128)<80.0,1,0)\n#在周34-55均线区间,日166-258\niszaiquejian=where((close_0<zhouma34) & (close_0>zhouma55),1,0)\n#曾经前几天下过55线,触碰过日258线\nisdiyu258=where(ts_min(low_0, 3)<zhouma55,1,0)\n\n#tmax=ts_argmax(high_0, 258*5)\n\n#反弹比例,选比例最高的10-20只交易,后面调试\nyiniandidian=ts_min(low_0, 258*1)\nbanniangaodian=ts_max(high_0, 128*1)\nfantanbili=banniangaodian/yiniandidian\n\n#排除ST\nst_status_0\n#时间序列函数, d 天内的最大值\n#ts_max(high_0, 258*4)\n#时间序列函数, d 天内的最小值\n#ts_min(low_0, 258*1)\n\n\n\n#isxiadie=where(ts_max(high_0, 258*4)>ts_min(low_0, 258*1),1,0)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2020-12-30","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"2500","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"2500","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n print('初始化函数,只执行一次')\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 10\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.3\n context.options['hold_days'] = 10\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n \n today = data.current_dt.strftime('%Y-%m-%d')\n #print('日期:',today)\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n #print('context.portfolio.portfolio_value:',context.portfolio.portfolio_value)\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n #print('cash_for_buy:',cash_for_buy,' context.portfolio.cash:',context.portfolio.cash)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n #print('context.portfolio.portfolio_value:',context.portfolio.portfolio_value)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n #print('is_staging:',is_staging,' cash_for_sell:',cash_for_sell)\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n \n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n print(today,' 选股: ',ranker_prediction[:10])\n print('sell instruments:',instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n \n stock_market_today_high = data.current(context.symbol(instrument), 'high') #今日最高价 \n stock_market_today_close = data.current(context.symbol(instrument), 'close') #今日收盘价\n last_cost_price = equities[instrument].cost_basis # 上次交易金额 \n target_return = stock_market_today_close/last_cost_price\n\n \n print(today,' instrument 滚动卖出 :','收益: ',target_return, instrument,'context.symbol(instrument):',context.symbol(instrument))\n if cash_for_sell <= 0:\n break\n \n #加上持仓超过50天或者收益大于20%卖出\n if len(equities) > 0:\n for i in equities.keys():\n #print(today,' equities:',equities)\n #p = context.portfolio.positions.items(i)\n #cash_for_sell -= p.amount * p.last_sale_price\n \n stock_market_price = data.current(context.symbol(i), 'price') # 最新市场价格\n stock_market_today_high = data.current(context.symbol(i), 'high') #今日最高价 \n stock_market_today_close = data.current(context.symbol(i), 'close') #今日收盘价\n last_sale_date = equities[i].last_sale_date # 上次交易日期\n last_cost_price = equities[i].cost_basis # 上次交易金额\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days # 持仓天数\n # 最高收益\n #high_return = (highclose_price_since_buy-last_cost_price)/last_cost_price\n \n target_return = stock_market_today_close/last_cost_price\n \n if hold_days>=100 :\n context.order_target(context.symbol(i), 0)\n print(today,'超期卖出 :','收益: ',target_return,equities[i], ' context.symbol(i):',context.symbol(i))\n context.order_target(context.symbol(i), 0)\n #if target_return>=1.2 :\n # context.order_target(context.symbol(i), 0)\n # print(today,' 盈利卖出 :','收益: ',target_return,equities[i],' context.symbol(i):',context.symbol(i))\n # elif target_return<=0.9 :\n # context.order_target(context.symbol(i), 0)\n # print(today,' 止损卖出 :','收益: ',target_return,equities[i],' context.symbol(i):',context.symbol(i))\n \n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n print(today,' buy_instruments:',buy_instruments,' 权重: ',buy_cash_weights)\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n print(today,' 买入 ',instrument)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n print('准备数据,只执行一次')\n df = context.options['data'].read_df()\n # 函数:求满足开仓条件的股票列表\n def open_pos_con(df):\n return list(df[df['fantanbili']>0].instrument)\n # 函数:求满足平仓条件的股票列表\n def close_pos_con(df):\n return list(df[df['fantanbili']>0].instrument)\n \n # 每日卖出股票的数据框\n context.daily_sell_stock= df.groupby('date').apply(close_pos_con) \n # 每日买入股票的数据框\n context.daily_buy_stock= df.groupby('date').apply(open_pos_con) \n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-733","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"isgaodian==1&isdidian==1&isbanniangaodian==1&st_status_0==0&date>'2019-01-01'","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-733"}],"output_ports":[{"name":"data","node_id":"-733"},{"name":"left_data","node_id":"-733"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-987","module_id":"BigQuantSpace.sort.sort-v5","parameters":[{"name":"sort_by","value":"isup","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-987"},{"name":"sort_by_ds","node_id":"-987"}],"output_ports":[{"name":"sorted_data","node_id":"-987"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-1003","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"isgaodian==1&isdidian==1&isbanniangaodian==1&st_status_0==0&date>'2020-01-01'","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1003"}],"output_ports":[{"name":"data","node_id":"-1003"},{"name":"left_data","node_id":"-1003"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-1009","module_id":"BigQuantSpace.sort.sort-v5","parameters":[{"name":"sort_by","value":"isup","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-1009"},{"name":"sort_by_ds","node_id":"-1009"}],"output_ports":[{"name":"sorted_data","node_id":"-1009"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='212,60,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='583,50.890235900878906,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='528,706,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='329,507,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='689.8902587890625,823,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='936,-26,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,600,200,200'/><node_position Node='-86' Position='1038,566.8902587890625,200,200'/><node_position Node='-215' Position='381,181,200,200'/><node_position Node='-222' Position='356,263,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='949,1001,200,200'/><node_position Node='-733' Position='459,365,200,200'/><node_position Node='-987' Position='547,442.0088806152344,200,200'/><node_position Node='-1003' Position='1188,410,200,200'/><node_position Node='-1009' Position='1196,484,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-03-26 19:48:38.383729] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-26 19:48:38.402426] INFO: moduleinvoker: 命中缓存
[2022-03-26 19:48:38.404237] INFO: moduleinvoker: instruments.v2 运行完成[0.020539s].
[2022-03-26 19:48:38.418127] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-03-26 19:48:39.187061] INFO: 自动标注(股票): 加载历史数据: 881121 行
[2022-03-26 19:48:39.188750] INFO: 自动标注(股票): 开始标注 ..
[2022-03-26 19:48:40.216192] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[1.798063s].
[2022-03-26 19:48:40.222625] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-03-26 19:48:40.248748] INFO: moduleinvoker: input_features.v1 运行完成[0.026114s].
[2022-03-26 19:48:40.263802] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-26 19:48:41.777105] INFO: 基础特征抽取: 年份 2012, 特征行数=487249
[2022-03-26 19:48:43.030377] INFO: 基础特征抽取: 年份 2013, 特征行数=559456
[2022-03-26 19:48:44.452509] INFO: 基础特征抽取: 年份 2014, 特征行数=565910
[2022-03-26 19:48:45.605826] INFO: 基础特征抽取: 年份 2015, 特征行数=567320
[2022-03-26 19:48:47.367724] INFO: 基础特征抽取: 年份 2016, 特征行数=639455
[2022-03-26 19:48:49.430802] INFO: 基础特征抽取: 年份 2017, 特征行数=742144
[2022-03-26 19:48:51.515919] INFO: 基础特征抽取: 年份 2018, 特征行数=816396
[2022-03-26 19:48:53.795634] INFO: 基础特征抽取: 年份 2019, 特征行数=881126
[2022-03-26 19:48:53.874618] INFO: 基础特征抽取: 总行数: 5259056
[2022-03-26 19:48:53.888805] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[13.625015s].
[2022-03-26 19:48:53.903957] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-26 19:49:10.062576] INFO: derived_feature_extractor: 提取完成 zhouma34=ta_ma(close_0, timeperiod=166), 7.187s
[2022-03-26 19:49:17.040807] INFO: derived_feature_extractor: 提取完成 zhouma55=ta_ma(close_0, timeperiod=258), 6.977s
[2022-03-26 19:49:17.077126] INFO: derived_feature_extractor: 提取完成 isup=zhouma34/zhouma55, 0.034s
[2022-03-26 19:49:18.872943] INFO: derived_feature_extractor: 提取完成 sy=shift(close_0, -100)/shift(open_0, -1), 1.794s
[2022-03-26 19:49:28.433109] INFO: derived_feature_extractor: 提取完成 ts_argmax(high_0, 258*5), 9.559s
[2022-03-26 19:49:37.988602] INFO: derived_feature_extractor: 提取完成 isgaodian=where(ts_argmax(high_0, 258*5)<500.0,1,0), 9.554s
[2022-03-26 19:49:54.677620] INFO: derived_feature_extractor: 提取完成 ts_argmin(low_0, 258*1), 16.687s
[2022-03-26 19:50:11.076744] INFO: derived_feature_extractor: 提取完成 isdidian=where(ts_argmin(low_0, 258*1)<100.0,1,0), 16.397s
[2022-03-26 19:50:29.584117] INFO: derived_feature_extractor: 提取完成 isbanniangaodian=where(ts_argmax(high_0, 128)<80.0,1,0), 18.506s
[2022-03-26 19:50:29.682831] INFO: derived_feature_extractor: 提取完成 iszaiquejian=where((close_0zhouma55),1,0), 0.097s
[2022-03-26 19:50:33.976830] INFO: derived_feature_extractor: 提取完成 isdiyu258=where(ts_min(low_0, 3)[2022-03-26 19:50:38.189278] INFO: derived_feature_extractor: 提取完成 yiniandidian=ts_min(low_0, 258*1), 4.211s
[2022-03-26 19:50:42.483858] INFO: derived_feature_extractor: 提取完成 banniangaodian=ts_max(high_0, 128*1), 4.293s
[2022-03-26 19:50:42.599065] INFO: derived_feature_extractor: 提取完成 fantanbili=banniangaodian/yiniandidian, 0.113s
[2022-03-26 19:50:44.205313] INFO: derived_feature_extractor: /y_2012, 487249
[2022-03-26 19:50:45.319704] INFO: derived_feature_extractor: /y_2013, 559456
[2022-03-26 19:50:46.482267] INFO: derived_feature_extractor: /y_2014, 565910
[2022-03-26 19:50:47.549370] INFO: derived_feature_extractor: /y_2015, 567320
[2022-03-26 19:50:48.714632] INFO: derived_feature_extractor: /y_2016, 639455
[2022-03-26 19:50:50.159334] INFO: derived_feature_extractor: /y_2017, 742144
[2022-03-26 19:50:51.809174] INFO: derived_feature_extractor: /y_2018, 816396
[2022-03-26 19:50:53.751596] INFO: derived_feature_extractor: /y_2019, 881126
[2022-03-26 19:50:54.338911] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[120.434941s].
[2022-03-26 19:50:54.348898] INFO: moduleinvoker: filter.v3 开始运行..
[2022-03-26 19:50:54.370087] INFO: filter: 使用表达式 isgaodian==1&isdidian==1&isbanniangaodian==1&st_status_0==0&date>'2019-01-01' 过滤
[2022-03-26 19:50:54.503396] INFO: filter: 过滤 /y_2012, 0/0/0
[2022-03-26 19:50:54.535300] INFO: filter: 过滤 /y_2013, 0/0/0
[2022-03-26 19:50:54.564459] INFO: filter: 过滤 /y_2014, 0/0/0
[2022-03-26 19:50:54.597933] INFO: filter: 过滤 /y_2015, 0/0/0
[2022-03-26 19:50:54.634030] INFO: filter: 过滤 /y_2016, 0/0/0
[2022-03-26 19:50:54.823367] INFO: filter: 过滤 /y_2017, 0/134870/134870
[2022-03-26 19:50:55.331070] INFO: filter: 过滤 /y_2018, 0/487962/487962
[2022-03-26 19:50:55.711177] INFO: filter: 过滤 /y_2019, 41409/296154/337563
[2022-03-26 19:50:55.762756] INFO: moduleinvoker: filter.v3 运行完成[1.413842s].
[2022-03-26 19:50:55.772660] INFO: moduleinvoker: sort.v5 开始运行..
[2022-03-26 19:50:56.198534] INFO: moduleinvoker: sort.v5 运行完成[0.42586s].
[2022-03-26 19:50:56.210773] INFO: moduleinvoker: join.v3 开始运行..
[2022-03-26 19:50:57.412423] INFO: join: /data, 行数=41368/41409, 耗时=0.307458s
[2022-03-26 19:50:57.458340] INFO: join: 最终行数: 41368
[2022-03-26 19:50:57.467472] INFO: moduleinvoker: join.v3 运行完成[1.256701s].
[2022-03-26 19:50:57.478749] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-26 19:50:57.626878] INFO: dropnan: /data, 41368/41368
[2022-03-26 19:50:57.669886] INFO: dropnan: 行数: 41368/41368
[2022-03-26 19:50:57.676340] INFO: moduleinvoker: dropnan.v1 运行完成[0.197584s].
[2022-03-26 19:50:57.690105] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2022-03-26 19:50:57.844542] INFO: StockRanker: 特征预处理 ..
[2022-03-26 19:50:57.874316] INFO: StockRanker: prepare data: training ..
[2022-03-26 19:50:58.467028] INFO: StockRanker训练: ffea9d96 准备训练: 41368 行数
[2022-03-26 19:50:58.722675] INFO: StockRanker训练: 正在训练 ..
[2022-03-26 19:52:19.199459] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[81.509359s].
[2022-03-26 19:52:19.204576] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-26 19:52:19.215385] INFO: moduleinvoker: 命中缓存
[2022-03-26 19:52:19.216770] INFO: moduleinvoker: instruments.v2 运行完成[0.012183s].
[2022-03-26 19:52:19.229206] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-26 19:52:20.469638] INFO: 基础特征抽取: 年份 2013, 特征行数=481423
[2022-03-26 19:52:21.736991] INFO: 基础特征抽取: 年份 2014, 特征行数=563554
[2022-03-26 19:52:22.949307] INFO: 基础特征抽取: 年份 2015, 特征行数=565314
[2022-03-26 19:52:24.333092] INFO: 基础特征抽取: 年份 2016, 特征行数=637231
[2022-03-26 19:52:26.188117] INFO: 基础特征抽取: 年份 2017, 特征行数=740053
[2022-03-26 19:52:28.231646] INFO: 基础特征抽取: 年份 2018, 特征行数=814800
[2022-03-26 19:52:30.418119] INFO: 基础特征抽取: 年份 2019, 特征行数=883658
[2022-03-26 19:52:32.496266] INFO: 基础特征抽取: 年份 2020, 特征行数=941844
[2022-03-26 19:52:32.582446] INFO: 基础特征抽取: 总行数: 5627877
[2022-03-26 19:52:32.591397] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[13.362192s].
[2022-03-26 19:52:32.599870] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-26 19:52:48.842275] INFO: derived_feature_extractor: 提取完成 zhouma34=ta_ma(close_0, timeperiod=166), 7.278s
[2022-03-26 19:52:55.900374] INFO: derived_feature_extractor: 提取完成 zhouma55=ta_ma(close_0, timeperiod=258), 7.056s
[2022-03-26 19:52:55.909460] INFO: derived_feature_extractor: 提取完成 isup=zhouma34/zhouma55, 0.007s
[2022-03-26 19:52:57.522694] INFO: derived_feature_extractor: 提取完成 sy=shift(close_0, -100)/shift(open_0, -1), 1.612s
[2022-03-26 19:53:06.953954] INFO: derived_feature_extractor: 提取完成 ts_argmax(high_0, 258*5), 9.430s
[2022-03-26 19:53:16.477245] INFO: derived_feature_extractor: 提取完成 isgaodian=where(ts_argmax(high_0, 258*5)<500.0,1,0), 9.522s
[2022-03-26 19:53:35.586580] INFO: derived_feature_extractor: 提取完成 ts_argmin(low_0, 258*1), 19.108s
[2022-03-26 19:53:53.577895] INFO: derived_feature_extractor: 提取完成 isdidian=where(ts_argmin(low_0, 258*1)<100.0,1,0), 17.990s
[2022-03-26 19:54:12.177194] INFO: derived_feature_extractor: 提取完成 isbanniangaodian=where(ts_argmax(high_0, 128)<80.0,1,0), 18.598s
[2022-03-26 19:54:12.190914] INFO: derived_feature_extractor: 提取完成 iszaiquejian=where((close_0zhouma55),1,0), 0.012s
[2022-03-26 19:54:16.726689] INFO: derived_feature_extractor: 提取完成 isdiyu258=where(ts_min(low_0, 3)[2022-03-26 19:54:21.201262] INFO: derived_feature_extractor: 提取完成 yiniandidian=ts_min(low_0, 258*1), 4.473s
[2022-03-26 19:54:25.716021] INFO: derived_feature_extractor: 提取完成 banniangaodian=ts_max(high_0, 128*1), 4.513s
[2022-03-26 19:54:25.802293] INFO: derived_feature_extractor: 提取完成 fantanbili=banniangaodian/yiniandidian, 0.085s
[2022-03-26 19:54:27.442248] INFO: derived_feature_extractor: /y_2013, 481423
[2022-03-26 19:54:28.477036] INFO: derived_feature_extractor: /y_2014, 563554
[2022-03-26 19:54:29.537615] INFO: derived_feature_extractor: /y_2015, 565314
[2022-03-26 19:54:30.748522] INFO: derived_feature_extractor: /y_2016, 637231
[2022-03-26 19:54:32.129457] INFO: derived_feature_extractor: /y_2017, 740053
[2022-03-26 19:54:33.634678] INFO: derived_feature_extractor: /y_2018, 814800
[2022-03-26 19:54:35.379133] INFO: derived_feature_extractor: /y_2019, 883658
[2022-03-26 19:54:37.316085] INFO: derived_feature_extractor: /y_2020, 941844
[2022-03-26 19:54:37.887791] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[125.287903s].
[2022-03-26 19:54:37.897511] INFO: moduleinvoker: filter.v3 开始运行..
[2022-03-26 19:54:37.918351] INFO: filter: 使用表达式 isgaodian==1&isdidian==1&isbanniangaodian==1&st_status_0==0&date>'2020-01-01' 过滤
[2022-03-26 19:54:38.034063] INFO: filter: 过滤 /y_2013, 0/0/0
[2022-03-26 19:54:38.064283] INFO: filter: 过滤 /y_2014, 0/0/0
[2022-03-26 19:54:38.099034] INFO: filter: 过滤 /y_2015, 0/0/0
[2022-03-26 19:54:38.132221] INFO: filter: 过滤 /y_2016, 0/0/0
[2022-03-26 19:54:38.169817] INFO: filter: 过滤 /y_2017, 0/0/0
[2022-03-26 19:54:38.375563] INFO: filter: 过滤 /y_2018, 0/139092/139092
[2022-03-26 19:54:38.868945] INFO: filter: 过滤 /y_2019, 0/513204/513204
[2022-03-26 19:54:39.278238] INFO: filter: 过滤 /y_2020, 47691/299478/347169
[2022-03-26 19:54:39.328422] INFO: moduleinvoker: filter.v3 运行完成[1.430905s].
[2022-03-26 19:54:39.335351] INFO: moduleinvoker: sort.v5 开始运行..
[2022-03-26 19:54:40.013604] INFO: moduleinvoker: sort.v5 运行完成[0.678247s].
[2022-03-26 19:54:40.022792] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-26 19:54:40.154757] INFO: dropnan: /data, 47691/47691
[2022-03-26 19:54:40.201627] INFO: dropnan: 行数: 47691/47691
[2022-03-26 19:54:40.207084] INFO: moduleinvoker: dropnan.v1 运行完成[0.184285s].
[2022-03-26 19:54:40.218959] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-03-26 19:54:40.392717] INFO: StockRanker预测: /data ..
[2022-03-26 19:54:40.523570] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.304586s].
[2022-03-26 19:54:42.402928] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-03-26 19:54:42.409855] INFO: backtest: biglearning backtest:V8.6.2
[2022-03-26 19:54:42.948542] ERROR: moduleinvoker: module name: backtest, module version: v8, trackeback: KeyError: 'fantanbili'
The above exception was the direct cause of the following exception:
KeyError: 'fantanbili'
[2022-03-26 19:54:42.960299] ERROR: moduleinvoker: module name: trade, module version: v4, trackeback: KeyError: 'fantanbili'
The above exception was the direct cause of the following exception:
KeyError: 'fantanbili'
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-ba0fadd75f9c483da4895dd582850800"}/bigcharts-data-end
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
KeyError: 'fantanbili'
The above exception was the direct cause of the following exception:
KeyError Traceback (most recent call last)
<ipython-input-2-8c2d1e3333dc> in <module>
323 )
324
--> 325 m19 = M.trade.v4(
326 instruments=m9.data,
327 options_data=m8.predictions,
<ipython-input-2-8c2d1e3333dc> in m19_prepare_bigquant_run(context)
123
124 # 每日卖出股票的数据框
--> 125 context.daily_sell_stock= df.groupby('date').apply(close_pos_con)
126 # 每日买入股票的数据框
127 context.daily_buy_stock= df.groupby('date').apply(open_pos_con)
<ipython-input-2-8c2d1e3333dc> in close_pos_con(df)
120 # 函数:求满足平仓条件的股票列表
121 def close_pos_con(df):
--> 122 return list(df[df['fantanbili']>0].instrument)
123
124 # 每日卖出股票的数据框
KeyError: 'fantanbili'