{"Description":"实验创建于2018/1/23","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-43:instruments","SourceOutputPortId":"-4129:data"},{"DestinationInputPortId":"-331:instruments","SourceOutputPortId":"-4129:data"},{"DestinationInputPortId":"-2932:data2","SourceOutputPortId":"-43:data"},{"DestinationInputPortId":"-43:features","SourceOutputPortId":"-49:data"},{"DestinationInputPortId":"-2932:data1","SourceOutputPortId":"-331:data"},{"DestinationInputPortId":"-331:features","SourceOutputPortId":"-337:data"},{"DestinationInputPortId":"-355:features","SourceOutputPortId":"-350:data"},{"DestinationInputPortId":"-3888:data2","SourceOutputPortId":"-2932:data"},{"DestinationInputPortId":"-780:input_1","SourceOutputPortId":"-387:data"},{"DestinationInputPortId":"-556:input_1","SourceOutputPortId":"-780:data_1"},{"DestinationInputPortId":"-474:input_1","SourceOutputPortId":"-380:data"},{"DestinationInputPortId":"-556:input_2","SourceOutputPortId":"-474:data_1"},{"DestinationInputPortId":"-606:input_1","SourceOutputPortId":"-556:data_1"},{"DestinationInputPortId":"-606:input_2","SourceOutputPortId":"-596:data"},{"DestinationInputPortId":"-996:input_data","SourceOutputPortId":"-606:data_1"},{"DestinationInputPortId":"-3888:data1","SourceOutputPortId":"-996:data"},{"DestinationInputPortId":"-355:input_data","SourceOutputPortId":"-3888:data"}],"ModuleNodes":[{"Id":"-4129","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"\n\n ","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-4129"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-4129","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-43","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"financial_statement_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-43"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-43"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-43","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-49","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nfs_net_income_x","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-49"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-49","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-331","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"market_value_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-331"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-331"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-331","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-337","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nmarket_cap","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-337"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-337","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-350","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nlog(market_cap)\nmarket_cap\nfs_net_income_x/market_cap","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-350"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-350","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-355","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-355"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-355"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-355","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2932","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-2932"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-2932"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2932","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-387","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"basic_info_IndustrySw","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-387"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-387"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-387","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-780","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# 修改数据列名\ndef bigquant_run(input_ds):\n df = input_ds.read_df()\n df['code'] = df['code'].astype(int)\n ds = DataSource().write_df(df)\n return Outputs(data_1=ds)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"input_ds","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"data_1","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-780"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-780"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-780"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-780","OutputType":null},{"Name":"data_2","NodeId":"-780","OutputType":null},{"Name":"data_3","NodeId":"-780","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-380","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"industry_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-380"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-380"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-380","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":11,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-474","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# 修改数据列名\ndef bigquant_run(input_ds):\n df = input_ds.read_df()\n df.rename(columns={'industry_sw_level1':'code'},inplace=True)\n df['code'] = df['code'].astype(int)\n ds = DataSource().write_df(df)\n return Outputs(data_1=ds)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"input_ds","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"data_1","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-474"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-474"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-474"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-474","OutputType":null},{"Name":"data_2","NodeId":"-474","OutputType":null},{"Name":"data_3","NodeId":"-474","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":12,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-556","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2):\n # 示例代码如下。在这里编写您的代码\n df_1=input_1.read_df()\n df_2=input_2.read_df()\n data = DataSource.write_df(pd.merge(df_1,df_2,on='code'))\n return Outputs(data_1=data)","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"input_1, input_2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"data_1","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-556"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-556"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-556"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-556","OutputType":null},{"Name":"data_2","NodeId":"-556","OutputType":null},{"Name":"data_3","NodeId":"-556","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"得出行业与股票代码的dataframe","CommentCollapsed":true},{"Id":"-596","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"financial_statement_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-596"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-596"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-596","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-606","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2):\n # 示例代码如下。在这里编写您的代码\n df_1=input_1.read_df()\n df_2=input_2.read_df()\n data = DataSource.write_df(pd.merge(df_1[['name','date','instrument']],df_2,on=['instrument','date']))\n return Outputs(data_1=data)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"input_1, input_2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"data_1","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-606"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-606"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-606"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-606","OutputType":null},{"Name":"data_2","NodeId":"-606","OutputType":null},{"Name":"data_3","NodeId":"-606","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-996","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-996"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-996","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3888","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-3888"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-3888"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-3888","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='-4129' Position='183,654,200,200'/><NodePosition Node='-43' Position='266,779,200,200'/><NodePosition Node='-49' Position='463.13421630859375,652.6218872070312,200,200'/><NodePosition Node='-331' Position='-39,777,200,200'/><NodePosition Node='-337' Position='-104,655,200,200'/><NodePosition Node='-350' Position='466,871,200,200'/><NodePosition Node='-355' Position='117,966,200,200'/><NodePosition Node='-2932' Position='40,862,200,200'/><NodePosition Node='-387' Position='-980,436,200,200'/><NodePosition Node='-780' Position='-973,513,200,200'/><NodePosition Node='-380' Position='-647,435,200,200'/><NodePosition Node='-474' Position='-624,522,200,200'/><NodePosition Node='-556' Position='-783,612,200,200'/><NodePosition Node='-596' Position='-469,620,200,200'/><NodePosition Node='-606' Position='-616,706,200,200'/><NodePosition Node='-996' Position='-545,783,200,200'/><NodePosition Node='-3888' Position='-345,892,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2019-01-15 17:59:11.478277] INFO: bigquant: instruments.v2 开始运行..
[2019-01-15 17:59:11.494980] INFO: bigquant: 命中缓存
[2019-01-15 17:59:11.496078] INFO: bigquant: instruments.v2 运行完成[0.01788s].
[2019-01-15 17:59:11.499494] INFO: bigquant: input_features.v1 开始运行..
[2019-01-15 17:59:11.506338] INFO: bigquant: 命中缓存
[2019-01-15 17:59:11.507206] INFO: bigquant: input_features.v1 运行完成[0.007675s].
[2019-01-15 17:59:11.523574] INFO: bigquant: use_datasource.v1 开始运行..
[2019-01-15 17:59:12.074848] INFO: bigquant: use_datasource.v1 运行完成[0.55126s].
[2019-01-15 17:59:12.077441] INFO: bigquant: input_features.v1 开始运行..
[2019-01-15 17:59:12.083406] INFO: bigquant: 命中缓存
[2019-01-15 17:59:12.084445] INFO: bigquant: input_features.v1 运行完成[0.006978s].
[2019-01-15 17:59:12.087062] INFO: bigquant: use_datasource.v1 开始运行..
[2019-01-15 17:59:12.094077] INFO: bigquant: 命中缓存
[2019-01-15 17:59:12.094879] INFO: bigquant: use_datasource.v1 运行完成[0.007835s].
[2019-01-15 17:59:12.098266] INFO: bigquant: join.v3 开始运行..
[2019-01-15 17:59:17.851180] INFO: join: /data, 行数=64682/80558, 耗时=2.107615s
[2019-01-15 17:59:18.000537] INFO: join: 最终行数: 64682
[2019-01-15 17:59:18.002575] INFO: bigquant: join.v3 运行完成[5.904373s].
[2019-01-15 17:59:18.004518] INFO: bigquant: input_features.v1 开始运行..
[2019-01-15 17:59:18.009055] INFO: bigquant: 命中缓存
[2019-01-15 17:59:18.009779] INFO: bigquant: input_features.v1 运行完成[0.005266s].
[2019-01-15 17:59:18.011648] INFO: bigquant: use_datasource.v1 开始运行..
[2019-01-15 17:59:18.026834] INFO: bigquant: 命中缓存
[2019-01-15 17:59:18.027999] INFO: bigquant: use_datasource.v1 运行完成[0.016347s].
[2019-01-15 17:59:18.034366] INFO: bigquant: cached.v3 开始运行..
[2019-01-15 17:59:18.040293] INFO: bigquant: 命中缓存
[2019-01-15 17:59:18.041300] INFO: bigquant: cached.v3 运行完成[0.006931s].
[2019-01-15 17:59:18.043947] INFO: bigquant: use_datasource.v1 开始运行..
[2019-01-15 17:59:18.092537] INFO: bigquant: 命中缓存
[2019-01-15 17:59:18.093488] INFO: bigquant: use_datasource.v1 运行完成[0.049578s].
[2019-01-15 17:59:18.097528] INFO: bigquant: cached.v3 开始运行..
[2019-01-15 17:59:18.102904] INFO: bigquant: 命中缓存
[2019-01-15 17:59:18.103721] INFO: bigquant: cached.v3 运行完成[0.006216s].
[2019-01-15 17:59:18.106585] INFO: bigquant: cached.v3 开始运行..
[2019-01-15 17:59:18.110802] INFO: bigquant: 命中缓存
[2019-01-15 17:59:18.111538] INFO: bigquant: cached.v3 运行完成[0.004937s].
[2019-01-15 17:59:18.113446] INFO: bigquant: use_datasource.v1 开始运行..
[2019-01-15 17:59:18.118320] INFO: bigquant: 命中缓存
[2019-01-15 17:59:18.119175] INFO: bigquant: use_datasource.v1 运行完成[0.005704s].
[2019-01-15 17:59:18.122619] INFO: bigquant: cached.v3 开始运行..
[2019-01-15 17:59:18.127252] INFO: bigquant: 命中缓存
[2019-01-15 17:59:18.127919] INFO: bigquant: cached.v3 运行完成[0.005311s].
[2019-01-15 17:59:18.131131] INFO: bigquant: dropnan.v1 开始运行..
[2019-01-15 17:59:18.135604] INFO: bigquant: 命中缓存
[2019-01-15 17:59:18.136299] INFO: bigquant: dropnan.v1 运行完成[0.0052s].
[2019-01-15 17:59:18.138252] INFO: bigquant: join.v3 开始运行..
[2019-01-15 17:59:18.227538] INFO: join: /data, 行数=3643/64682, 耗时=0.05775s
[2019-01-15 17:59:18.238390] INFO: join: 最终行数: 3643
[2019-01-15 17:59:18.240348] INFO: bigquant: join.v3 运行完成[0.102083s].
[2019-01-15 17:59:18.243747] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-01-15 17:59:18.260740] WARNING: derived_feature_extractor: 特征 fs_net_income_x/market_cap,找不到依赖的列:fs_net_income_x
[2019-01-15 17:59:18.266199] INFO: derived_feature_extractor: 提取完成 log(market_cap), 0.001s
[2019-01-15 17:59:18.267055] INFO: derived_feature_extractor: 提取失败 fs_net_income_x/market_cap: Unknown fs_net_income_x
[2019-01-15 17:59:18.287992] INFO: derived_feature_extractor: /data, 3643
[2019-01-15 17:59:18.319331] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.075545s].