{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-735:data2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"},{"to_node_id":"-719:input_1","from_node_id":"-709:data"},{"to_node_id":"-735:data1","from_node_id":"-719:data_1"},{"to_node_id":"-250:options_data","from_node_id":"-735:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-09-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-11-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"10","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"100","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"1","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-11-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-12-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n\n class FixedPriceSlippage(SlippageModel):\n def process_order(self, data, order, bar_volume=0, trigger_check_price=0):\n if order.limit is None:\n price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell\n price = data.current(order.asset, price_field)\n else:\n price = order.limit\n # 返回希望成交的价格和数量\n return (price, order.amount)\n # 如果未限价,设置滑点范围为最低价到最高价,即未限价时按照开盘价买入、收盘价卖出\n context.fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='close')\n context.set_slippage(us_equities=context.fix_slippage) # us是universe的简写,如果是期货,需要传入us_future\n\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0, limit_price=sell_price)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash, limit_price=buy_price)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-709","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"bar5m_CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"2021-11-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-01","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-709"},{"name":"features","node_id":"-709"}],"output_ports":[{"name":"data","node_id":"-709"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-719","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 原始输入\n min5_df = input_1.read_df()\n #min5_df = DataSource(\"bar5m_CN_STOCK_A\").read(start_date=conf.start_date,end_date=conf.end_date,fields = ['date','instument','open'])\n min5_df =min5_df.rename(columns={'date':'datetime'})\n buy_time=\"9:45\"\n close_time=\"14:45\"\n min5_df_buy_1=min5_df.set_index(\"datetime\").between_time(buy_time, buy_time)\n min5_df_close_1=min5_df.set_index(\"datetime\").between_time(close_time, close_time)\n min5_df_buy_1['buy_price']= min5_df_buy_1['open'].shift(-1)\n min5_df_close_1['sell_price']= min5_df_close_1['open'].shift(-1)\n min5_df_buy=min5_df_buy_1.rename(columns={'open':'open_buy'})\n min5_df_close=min5_df_close_1.rename(columns={'open':'open_close'})\n min5_df_buy['date'] = min5_df_buy.index.floor('D')\n min5_df_close['date'] = min5_df_buy.index.floor('D')\n # 合并老&新因子\n min5_df_final = pd.merge(min5_df_buy,min5_df_close,on=['date','instrument']) \n # 输出\n data_1 = DataSource.write_df(min5_df_final)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-719"},{"name":"input_2","node_id":"-719"},{"name":"input_3","node_id":"-719"}],"output_ports":[{"name":"data_1","node_id":"-719"},{"name":"data_2","node_id":"-719"},{"name":"data_3","node_id":"-719"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-735","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-735"},{"name":"data2","node_id":"-735"}],"output_ports":[{"name":"data","node_id":"-735"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='638,561,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-215' Position='381,188,200,200'/><node_position Node='-222' Position='386,280,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='1032,912,200,200'/><node_position Node='-709' Position='293,627,200,200'/><node_position Node='-719' Position='388,714,200,200'/><node_position Node='-735' Position='685,829,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-12-29 22:25:02.611464] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-29 22:25:02.623294] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:02.625210] INFO: moduleinvoker: instruments.v2 运行完成[0.013751s].
[2021-12-29 22:25:02.637235] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-12-29 22:25:02.646735] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:02.648641] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.011415s].
[2021-12-29 22:25:02.653742] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-29 22:25:02.664570] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:02.666964] INFO: moduleinvoker: input_features.v1 运行完成[0.013227s].
[2021-12-29 22:25:02.707605] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-29 22:25:02.716279] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:02.718426] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.010851s].
[2021-12-29 22:25:02.726684] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-29 22:25:02.736015] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:02.737785] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.0111s].
[2021-12-29 22:25:02.747651] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-29 22:25:02.757522] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:02.760266] INFO: moduleinvoker: join.v3 运行完成[0.012586s].
[2021-12-29 22:25:02.772851] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-12-29 22:25:02.784468] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:02.786198] INFO: moduleinvoker: dropnan.v1 运行完成[0.013358s].
[2021-12-29 22:25:02.794450] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2021-12-29 22:25:02.808503] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:02.977349] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[0.182899s].
[2021-12-29 22:25:02.982710] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-29 22:25:02.995476] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:02.997922] INFO: moduleinvoker: instruments.v2 运行完成[0.01517s].
[2021-12-29 22:25:03.012317] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-29 22:25:03.021575] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:03.024437] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012139s].
[2021-12-29 22:25:03.033564] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-29 22:25:03.041781] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:03.043557] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.009999s].
[2021-12-29 22:25:03.053908] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-12-29 22:25:03.062447] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:03.064489] INFO: moduleinvoker: dropnan.v1 运行完成[0.010567s].
[2021-12-29 22:25:03.073542] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2021-12-29 22:25:03.086872] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:03.088561] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.015021s].
[2021-12-29 22:25:03.093568] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2021-12-29 22:25:03.104020] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:03.105968] INFO: moduleinvoker: use_datasource.v1 运行完成[0.012396s].
[2021-12-29 22:25:03.120826] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-29 22:25:03.144229] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:03.146039] INFO: moduleinvoker: cached.v3 运行完成[0.025232s].
[2021-12-29 22:25:03.155336] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-29 22:25:03.166508] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:03.169360] INFO: moduleinvoker: join.v3 运行完成[0.01402s].
[2021-12-29 22:25:03.224427] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-12-29 22:25:03.229943] INFO: backtest: biglearning backtest:V8.6.1
[2021-12-29 22:25:03.231512] INFO: backtest: product_type:stock by specified
[2021-12-29 22:25:03.316699] INFO: moduleinvoker: cached.v2 开始运行..
[2021-12-29 22:25:03.325373] INFO: moduleinvoker: 命中缓存
[2021-12-29 22:25:03.327403] INFO: moduleinvoker: cached.v2 运行完成[0.010725s].
[2021-12-29 22:25:04.693135] INFO: algo: TradingAlgorithm V1.8.6
[2021-12-29 22:25:05.109240] INFO: algo: trading transform...
[2021-12-29 22:25:05.375060] ERROR: moduleinvoker: module name: backtest, module version: v8, trackeback: NameError: name 'buy_price' is not defined
[2021-12-29 22:25:05.384631] ERROR: moduleinvoker: module name: trade, module version: v4, trackeback: NameError: name 'buy_price' is not defined
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-b462ef6b9d744ff39fa07dd26366cbc5"}/bigcharts-data-end
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-10-e379e5f2ea39> in <module>
258 )
259
--> 260 m19 = M.trade.v4(
261 instruments=m9.data,
262 options_data=m10.data,
<ipython-input-10-e379e5f2ea39> in m19_handle_data_bigquant_run(context, data)
97 cash = max_cash_per_instrument - positions.get(instrument, 0)
98 if cash > 0:
---> 99 context.order_value(context.symbol(instrument), cash, limit_price=buy_price)
100
101 # 回测引擎:准备数据,只执行一次
NameError: name 'buy_price' is not defined