{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3318:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-8690:sort_by_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-2996:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-3334:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"-3318:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-3318:predict_ds","from_node_id":"-86:data"},{"to_node_id":"-8690:input_ds","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"},{"to_node_id":"-3356:raw_perf_1","from_node_id":"-250:raw_perf"},{"to_node_id":"-3356:raw_perf_2","from_node_id":"-2996:raw_perf"},{"to_node_id":"-3334:options_data","from_node_id":"-3318:predictions"},{"to_node_id":"-3356:raw_perf_3","from_node_id":"-3334:raw_perf"},{"to_node_id":"-2996:options_data","from_node_id":"-8690:sorted_data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n#all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-04-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-2996","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-2996"},{"name":"options_data","node_id":"-2996"},{"name":"history_ds","node_id":"-2996"},{"name":"benchmark_ds","node_id":"-2996"},{"name":"trading_calendar","node_id":"-2996"}],"output_ports":[{"name":"raw_perf","node_id":"-2996"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-3318","module_id":"BigQuantSpace.xgboost.xgboost-v1","parameters":[{"name":"num_boost_round","value":30,"type":"Literal","bound_global_parameter":null},{"name":"objective","value":"排序(pairwise)","type":"Literal","bound_global_parameter":null},{"name":"booster","value":"gbtree","type":"Literal","bound_global_parameter":null},{"name":"max_depth","value":6,"type":"Literal","bound_global_parameter":null},{"name":"key_cols","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"group_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"nthread","value":1,"type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"other_train_parameters","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-3318"},{"name":"features","node_id":"-3318"},{"name":"model","node_id":"-3318"},{"name":"predict_ds","node_id":"-3318"}],"output_ports":[{"name":"output_model","node_id":"-3318"},{"name":"predictions","node_id":"-3318"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-3334","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-3334"},{"name":"options_data","node_id":"-3334"},{"name":"history_ds","node_id":"-3334"},{"name":"benchmark_ds","node_id":"-3334"},{"name":"trading_calendar","node_id":"-3334"}],"output_ports":[{"name":"raw_perf","node_id":"-3334"}],"cacheable":false,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-3356","module_id":"BigQuantSpace.multi_strategy_analysis.multi_strategy_analysis-v3","parameters":[{"name":"raw_perfs_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"weights_list","value":"0.33,0.33,0.34","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"raw_perf_1","node_id":"-3356"},{"name":"raw_perf_2","node_id":"-3356"},{"name":"raw_perf_3","node_id":"-3356"}],"output_ports":[{"name":"raw_perf","node_id":"-3356"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-8690","module_id":"BigQuantSpace.sort.sort-v5","parameters":[{"name":"sort_by","value":"pe_ttm_0","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-8690"},{"name":"sort_by_ds","node_id":"-8690"}],"output_ports":[{"name":"sorted_data","node_id":"-8690"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='228,-27,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='90,132,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='694,-32,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='191,613,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='269,345,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='195,709,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1126,-35,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='378,454,200,200'/><node_position Node='-86' Position='1127,382,200,200'/><node_position Node='-215' Position='406,135,200,200'/><node_position Node='-222' Position='397,235,200,200'/><node_position Node='-231' Position='1124,126,200,200'/><node_position Node='-238' Position='1121,271,200,200'/><node_position Node='-250' Position='113,807,200,200'/><node_position Node='-2996' Position='598,808,200,200'/><node_position Node='-3318' Position='1108,620,200,200'/><node_position Node='-3334' Position='1073,806,200,200'/><node_position Node='-3356' Position='662,966,200,200'/><node_position Node='-8690' Position='689,616,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-04-25 11:09:37.568733] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-25 11:09:37.748077] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:37.750109] INFO: moduleinvoker: instruments.v2 运行完成[0.181382s].
[2022-04-25 11:09:37.776978] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-04-25 11:09:37.789773] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:37.792547] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.015574s].
[2022-04-25 11:09:37.798513] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-04-25 11:09:37.808856] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:37.810594] INFO: moduleinvoker: input_features.v1 运行完成[0.012104s].
[2022-04-25 11:09:37.823906] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-25 11:09:37.834238] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:37.836126] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012242s].
[2022-04-25 11:09:37.843032] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-25 11:09:37.855300] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:37.857870] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.014827s].
[2022-04-25 11:09:37.867978] INFO: moduleinvoker: join.v3 开始运行..
[2022-04-25 11:09:37.891310] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:37.893961] INFO: moduleinvoker: join.v3 运行完成[0.025983s].
[2022-04-25 11:09:37.904442] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-04-25 11:09:37.916251] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:37.918169] INFO: moduleinvoker: dropnan.v1 运行完成[0.013734s].
[2022-04-25 11:09:37.925764] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2022-04-25 11:09:37.939210] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:38.055868] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[0.13009s].
[2022-04-25 11:09:38.061948] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-25 11:09:38.098269] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:38.100365] INFO: moduleinvoker: instruments.v2 运行完成[0.038423s].
[2022-04-25 11:09:38.116820] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-25 11:09:38.127458] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:38.129502] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012859s].
[2022-04-25 11:09:38.136811] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-25 11:09:38.147018] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:38.148940] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.012135s].
[2022-04-25 11:09:38.158341] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-04-25 11:09:38.167656] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:38.169918] INFO: moduleinvoker: dropnan.v1 运行完成[0.011578s].
[2022-04-25 11:09:38.181454] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-04-25 11:09:38.200799] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:38.203397] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.02195s].
[2022-04-25 11:09:38.218284] INFO: moduleinvoker: xgboost.v1 开始运行..
[2022-04-25 11:09:38.237709] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:09:38.240478] INFO: moduleinvoker: xgboost.v1 运行完成[0.022202s].
[2022-04-25 11:09:38.247101] INFO: moduleinvoker: sort.v5 开始运行..
[2022-04-25 11:10:05.380950] INFO: moduleinvoker: sort.v5 运行完成[27.133847s].
[2022-04-25 11:10:05.456927] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-04-25 11:10:05.475096] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:10:12.222537] INFO: moduleinvoker: backtest.v8 运行完成[6.765619s].
[2022-04-25 11:10:12.224415] INFO: moduleinvoker: trade.v4 运行完成[6.807465s].
[2022-04-25 11:10:12.280186] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-04-25 11:10:12.287053] INFO: backtest: biglearning backtest:V8.6.2
[2022-04-25 11:10:12.289127] INFO: backtest: product_type:stock by specified
[2022-04-25 11:10:12.388831] INFO: moduleinvoker: cached.v2 开始运行..
[2022-04-25 11:10:12.400949] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:10:12.402771] INFO: moduleinvoker: cached.v2 运行完成[0.013974s].
[2022-04-25 11:10:15.717029] INFO: algo: TradingAlgorithm V1.8.7
[2022-04-25 11:10:37.358490] INFO: algo: trading transform...
[2022-04-25 11:10:40.393655] INFO: algo: handle_splits get splits [dt:2021-05-26 00:00:00+00:00] [asset:Equity(4008 [600095.SHA]), ratio:0.9943274855613708]
[2022-04-25 11:10:40.395536] INFO: Position: position stock handle split[sid:4008, orig_amount:4300, new_amount:4324.0, orig_cost:11.664883680377226, new_cost:11.5987, ratio:0.9943274855613708, last_sale_price:12.270001411437988]
[2022-04-25 11:10:40.396995] INFO: Position: after split: PositionStock(asset:Equity(4008 [600095.SHA]), amount:4324.0, cost_basis:11.5987, last_sale_price:12.34000015258789)
[2022-04-25 11:10:40.398127] INFO: Position: returning cash: 6.5149
[2022-04-25 11:10:40.428979] INFO: algo: handle_splits get splits [dt:2021-05-27 00:00:00+00:00] [asset:Equity(3715 [600327.SHA]), ratio:0.9664880037307739]
[2022-04-25 11:10:40.430752] INFO: Position: position stock handle split[sid:3715, orig_amount:5300, new_amount:5483.0, orig_cost:7.719999791984279, new_cost:7.4613, ratio:0.9664880037307739, last_sale_price:7.210000514984131]
[2022-04-25 11:10:40.432043] INFO: Position: after split: PositionStock(asset:Equity(3715 [600327.SHA]), amount:5483.0, cost_basis:7.4613, last_sale_price:7.460000038146973)
[2022-04-25 11:10:40.433139] INFO: Position: returning cash: 5.5672
[2022-04-25 11:10:40.690360] INFO: algo: handle_splits get splits [dt:2021-06-10 00:00:00+00:00] [asset:Equity(4846 [603196.SHA]), ratio:0.9891789555549622]
[2022-04-25 11:10:40.692119] INFO: Position: position stock handle split[sid:4846, orig_amount:12100, new_amount:12232.0, orig_cost:10.87115784104189, new_cost:10.7535, ratio:0.9891789555549622, last_sale_price:10.969995498657227]
[2022-04-25 11:10:40.693414] INFO: Position: after split: PositionStock(asset:Equity(4846 [603196.SHA]), amount:12232.0, cost_basis:10.7535, last_sale_price:11.090001106262207)
[2022-04-25 11:10:40.694543] INFO: Position: returning cash: 4.0258
[2022-04-25 11:10:41.046830] INFO: algo: handle_splits get splits [dt:2021-06-30 00:00:00+00:00] [asset:Equity(1868 [300827.SZA]), ratio:0.5543264746665955]
[2022-04-25 11:10:41.307111] INFO: algo: handle_splits get splits [dt:2021-07-14 00:00:00+00:00] [asset:Equity(349 [300505.SZA]), ratio:0.9982706904411316]
[2022-04-25 11:10:41.308924] INFO: Position: position stock handle split[sid:349, orig_amount:1200, new_amount:1202.0, orig_cost:34.19999695991507, new_cost:34.1409, ratio:0.9982706904411316, last_sale_price:34.639991760253906]
[2022-04-25 11:10:41.310350] INFO: Position: after split: PositionStock(asset:Equity(349 [300505.SZA]), amount:1202.0, cost_basis:34.1409, last_sale_price:34.69999694824219)
[2022-04-25 11:10:41.311570] INFO: Position: returning cash: 2.7285
[2022-04-25 11:10:41.366765] INFO: algo: handle_splits get splits [dt:2021-07-16 00:00:00+00:00] [asset:Equity(1253 [300712.SZA]), ratio:0.9985746741294861]
[2022-04-25 11:10:41.369175] INFO: Position: position stock handle split[sid:1253, orig_amount:400, new_amount:400.0, orig_cost:69.99999241926604, new_cost:69.9002, ratio:0.9985746741294861, last_sale_price:70.06998443603516]
[2022-04-25 11:10:41.370898] INFO: Position: after split: PositionStock(asset:Equity(1253 [300712.SZA]), amount:400.0, cost_basis:69.9002, last_sale_price:70.16999816894531)
[2022-04-25 11:10:41.372120] INFO: Position: returning cash: 40.006
[2022-04-25 11:10:46.104267] INFO: Performance: Simulated 302 trading days out of 302.
[2022-04-25 11:10:46.105758] INFO: Performance: first open: 2021-01-04 09:30:00+00:00
[2022-04-25 11:10:46.106996] INFO: Performance: last close: 2022-04-01 15:00:00+00:00
[2022-04-25 11:10:52.403185] INFO: moduleinvoker: backtest.v8 运行完成[40.122999s].
[2022-04-25 11:10:52.405125] INFO: moduleinvoker: trade.v4 运行完成[40.174604s].
[2022-04-25 11:10:52.453013] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-04-25 11:10:52.467260] INFO: moduleinvoker: 命中缓存
[2022-04-25 11:10:57.291648] INFO: moduleinvoker: backtest.v8 运行完成[4.838629s].
[2022-04-25 11:10:57.294002] INFO: moduleinvoker: trade.v4 运行完成[4.881007s].
[2022-04-25 11:10:57.945217] INFO: moduleinvoker: multi_strategy_analysis.v3 运行完成[0.641454s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-480cc6c5a8274efe8cd79fc0abf6968d"}/bigcharts-data-end
- 收益率41.5%
- 年化收益率33.6%
- 基准收益率-17.94%
- 阿尔法0.41
- 贝塔0.37
- 夏普比率1.41
- 胜率0.52
- 盈亏比1.33
- 收益波动率19.78%
- 信息比率0.13
- 最大回撤17.82%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-668e1c94066b4932ab2c6740179243ee"}/bigcharts-data-end
- 收益率-26.43%
- 年化收益率-22.6%
- 基准收益率-17.94%
- 阿尔法-0.07
- 贝塔0.34
- 夏普比率-0.23
- 胜率0.4
- 盈亏比1.38
- 收益波动率55.9%
- 信息比率0.01
- 最大回撤47.03%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-65780dbbb18b4f01ba154b8838c64ea7"}/bigcharts-data-end
- 收益率22.78%
- 年化收益率18.68%
- 基准收益率-17.94%
- 阿尔法0.29
- 贝塔0.46
- 夏普比率0.71
- 胜率0.52
- 盈亏比1.11
- 收益波动率24.17%
- 信息比率0.09
- 最大回撤19.64%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-586076b8f71a47238899fc93a639dc0a"}/bigcharts-data-end
[0.33, 0.33, 0.34]
{'return_ratio': 0.13176856701050088, 'annual_return_ratio': 0.10881057287844098, 'beta': 0.3943200863364792, 'alpha': 0.22036078144675075, 'sharp_ratio': 0.3920006750575314, 'return_volatility': 0.2614834129032955, 'max_drawdown': -0.2758754589556018}