{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-209:data2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"},{"to_node_id":"-216:input_ds","from_node_id":"-209:data"},{"to_node_id":"-250:options_data","from_node_id":"-216:sorted_data"},{"to_node_id":"-14541:input_1","from_node_id":"-214:data_1"},{"to_node_id":"-214:input_1","from_node_id":"-332:data"},{"to_node_id":"-332:trained_model","from_node_id":"-320:data"},{"to_node_id":"-320:input_model","from_node_id":"-293:data"},{"to_node_id":"-293:outputs","from_node_id":"-259:data"},{"to_node_id":"-259:inputs","from_node_id":"-14841:data"},{"to_node_id":"-14841:inputs","from_node_id":"-14806:data"},{"to_node_id":"-14806:inputs","from_node_id":"-14834:data"},{"to_node_id":"-14834:inputs","from_node_id":"-218:data"},{"to_node_id":"-218:inputs","from_node_id":"-446:data"},{"to_node_id":"-408:inputs","from_node_id":"-403:data"},{"to_node_id":"-293:inputs","from_node_id":"-210:data"},{"to_node_id":"-403:inputs","from_node_id":"-210:data"},{"to_node_id":"-446:inputs","from_node_id":"-408:data"},{"to_node_id":"-320:training_data","from_node_id":"-333:data"},{"to_node_id":"-333:input_data","from_node_id":"-2296:data"},{"to_node_id":"-2296:input_data","from_node_id":"-2290:data"},{"to_node_id":"-2290:data1","from_node_id":"-289:data"},{"to_node_id":"-289:instruments","from_node_id":"-620:data"},{"to_node_id":"-300:instruments","from_node_id":"-620:data"},{"to_node_id":"-307:input_data","from_node_id":"-300:data"},{"to_node_id":"-2290:data2","from_node_id":"-307:data"},{"to_node_id":"-333:features","from_node_id":"-2295:data"},{"to_node_id":"-300:features","from_node_id":"-2295:data"},{"to_node_id":"-307:features","from_node_id":"-2295:data"},{"to_node_id":"-316:features","from_node_id":"-2295:data"},{"to_node_id":"-692:features","from_node_id":"-2295:data"},{"to_node_id":"-341:features","from_node_id":"-2295:data"},{"to_node_id":"-692:input_data","from_node_id":"-316:data"},{"to_node_id":"-330:input_data","from_node_id":"-692:data"},{"to_node_id":"-214:input_3","from_node_id":"-330:data"},{"to_node_id":"-341:input_data","from_node_id":"-330:data"},{"to_node_id":"-214:input_2","from_node_id":"-341:data"},{"to_node_id":"-332:input_data","from_node_id":"-341:data"},{"to_node_id":"-209:data1","from_node_id":"-14541:data_1"},{"to_node_id":"-316:instruments","from_node_id":"-14549:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n\n #-------------大盘风控模块\n # 获取当前持仓\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n \n today = data.current_dt.strftime('%Y-%m-%d')\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == today]\n try:\n #大盘风控模块,读取深度学习模型预测涨跌的风控数据 \n benckmark_risk=ranker_prediction['result'].values[0]\n # 若预测涨跌的概率小于0.49则不开仓 全仓风控\n if benckmark_risk < 0.49:\n for instrument in positions.keys():\n context.order_target(context.symbol(instrument), 0)\n print(today,'LSTM预测大盘上涨小于0.49,全仓卖出')\n #如果return 在这里 只会卖出第一支持仓的股票,执行一次后返回,有可能起不到全仓风控的作用\n return\n except:\n print('开仓!') \n \n #-------------大盘风控模块\n \n \n \n #prediction = context.prediction[data.current_dt.strftime('%Y-%m-%d')]\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-209","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date","type":"Literal","bound_global_parameter":null},{"name":"how","value":"outer","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-209"},{"name":"data2","node_id":"-209"}],"output_ports":[{"name":"data","node_id":"-209"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-216","module_id":"BigQuantSpace.sort.sort-v4","parameters":[{"name":"sort_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"--","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-216"},{"name":"sort_by_ds","node_id":"-216"}],"output_ports":[{"name":"sorted_data","node_id":"-216"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-214","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n\n \n test_data = input_2.read_pickle()\n pred_label = input_1.read_pickle()\n pred_result = pred_label.reshape(pred_label.shape[0]) \n dt = input_3.read_df()['date'][-1*len(pred_result):]\n pred_df = pd.Series(pred_result, index=dt)\n ds = DataSource.write_df(pred_df)\n return Outputs(data_1=ds)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-214"},{"name":"input_2","node_id":"-214"},{"name":"input_3","node_id":"-214"}],"output_ports":[{"name":"data_1","node_id":"-214"},{"name":"data_2","node_id":"-214"},{"name":"data_3","node_id":"-214"}],"cacheable":true,"seq_num":21,"comment":"模型预测结果输出","comment_collapsed":true},{"node_id":"-332","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"10240","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"0","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-332"},{"name":"input_data","node_id":"-332"}],"output_ports":[{"name":"data","node_id":"-332"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-320","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"binary_crossentropy","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"accuracy","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"2048","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"10","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"1","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"1:输出进度条记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-320"},{"name":"training_data","node_id":"-320"},{"name":"validation_data","node_id":"-320"}],"output_ports":[{"name":"data","node_id":"-320"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-293"},{"name":"outputs","node_id":"-293"}],"output_ports":[{"name":"data","node_id":"-293"}],"cacheable":false,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-259","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"sigmoid","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-259"}],"output_ports":[{"name":"data","node_id":"-259"}],"cacheable":false,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-14841","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.8","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14841"}],"output_ports":[{"name":"data","node_id":"-14841"}],"cacheable":false,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-14806","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"32","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"tanh","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14806"}],"output_ports":[{"name":"data","node_id":"-14806"}],"cacheable":false,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-14834","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.4","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14834"}],"output_ports":[{"name":"data","node_id":"-14834"}],"cacheable":false,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-218","module_id":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","parameters":[{"name":"units","value":"32","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"tanh","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_activation","value":"hard_sigmoid","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_initializer","value":"Orthogonal","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"unit_forget_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"dropout","value":"0","type":"Literal","bound_global_parameter":null},{"name":"recurrent_dropout","value":0,"type":"Literal","bound_global_parameter":null},{"name":"return_sequences","value":"False","type":"Literal","bound_global_parameter":null},{"name":"implementation","value":"2","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-218"}],"output_ports":[{"name":"data","node_id":"-218"}],"cacheable":false,"seq_num":29,"comment":"","comment_collapsed":true},{"node_id":"-446","module_id":"BigQuantSpace.dl_layer_reshape.dl_layer_reshape-v1","parameters":[{"name":"target_shape","value":"48,32","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-446"}],"output_ports":[{"name":"data","node_id":"-446"}],"cacheable":false,"seq_num":30,"comment":"","comment_collapsed":true},{"node_id":"-403","module_id":"BigQuantSpace.dl_layer_reshape.dl_layer_reshape-v1","parameters":[{"name":"target_shape","value":"50,5,1","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-403"}],"output_ports":[{"name":"data","node_id":"-403"}],"cacheable":false,"seq_num":31,"comment":"","comment_collapsed":true},{"node_id":"-210","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"50,5","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-210"}],"output_ports":[{"name":"data","node_id":"-210"}],"cacheable":false,"seq_num":32,"comment":"","comment_collapsed":true},{"node_id":"-408","module_id":"BigQuantSpace.dl_layer_conv2d.dl_layer_conv2d-v1","parameters":[{"name":"filters","value":"32","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3,5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1,1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"data_format","value":"channels_last","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":"1,1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-408"}],"output_ports":[{"name":"data","node_id":"-408"}],"cacheable":false,"seq_num":33,"comment":"","comment_collapsed":true},{"node_id":"-333","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"50","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-333"},{"name":"features","node_id":"-333"}],"output_ports":[{"name":"data","node_id":"-333"}],"cacheable":true,"seq_num":34,"comment":"","comment_collapsed":true},{"node_id":"-2296","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-2296"}],"output_ports":[{"name":"data","node_id":"-2296"}],"cacheable":true,"seq_num":35,"comment":"去掉为nan的数据","comment_collapsed":true},{"node_id":"-2290","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-2290"},{"name":"data2","node_id":"-2290"}],"output_ports":[{"name":"data","node_id":"-2290"}],"cacheable":true,"seq_num":36,"comment":"标注特征连接","comment_collapsed":true},{"node_id":"-289","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nwhere(shift(close, -10) / close -1>0,1,0)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-289"}],"output_ports":[{"name":"data","node_id":"-289"}],"cacheable":true,"seq_num":37,"comment":"","comment_collapsed":true},{"node_id":"-620","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-02","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-10-30","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"601398.SHA\n600028.SHA\n601628.SHA\n600029.SHA\n600048.SHA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-620"}],"output_ports":[{"name":"data","node_id":"-620"}],"cacheable":true,"seq_num":38,"comment":"","comment_collapsed":true},{"node_id":"-300","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-300"},{"name":"features","node_id":"-300"}],"output_ports":[{"name":"data","node_id":"-300"}],"cacheable":true,"seq_num":39,"comment":"","comment_collapsed":true},{"node_id":"-307","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-307"},{"name":"features","node_id":"-307"}],"output_ports":[{"name":"data","node_id":"-307"}],"cacheable":true,"seq_num":40,"comment":"","comment_collapsed":true},{"node_id":"-2295","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"(close_0/close_1-1)*10\n(high_0/high_1-1)*10\n(low_0/low_1-1)*10\n(open_0/open_1-1)*10\n(volume_0/volume_1-1)*10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-2295"}],"output_ports":[{"name":"data","node_id":"-2295"}],"cacheable":true,"seq_num":41,"comment":"","comment_collapsed":true},{"node_id":"-316","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-316"},{"name":"features","node_id":"-316"}],"output_ports":[{"name":"data","node_id":"-316"}],"cacheable":true,"seq_num":43,"comment":"","comment_collapsed":true},{"node_id":"-692","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-692"},{"name":"features","node_id":"-692"}],"output_ports":[{"name":"data","node_id":"-692"}],"cacheable":true,"seq_num":44,"comment":"","comment_collapsed":true},{"node_id":"-330","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-330"}],"output_ports":[{"name":"data","node_id":"-330"}],"cacheable":true,"seq_num":45,"comment":"","comment_collapsed":true},{"node_id":"-341","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"50","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-341"},{"name":"features","node_id":"-341"}],"output_ports":[{"name":"data","node_id":"-341"}],"cacheable":true,"seq_num":46,"comment":"","comment_collapsed":true},{"node_id":"-14541","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read()\n \n data_2 = DataSource.write_pickle(df)\n #给空列命名 为 result\n df1=pd.DataFrame(df)\n df1.columns=['result']\n #df1\n data_1 = DataSource.write_df(df1)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-14541"},{"name":"input_2","node_id":"-14541"},{"name":"input_3","node_id":"-14541"}],"output_ports":[{"name":"data_1","node_id":"-14541"},{"name":"data_2","node_id":"-14541"},{"name":"data_3","node_id":"-14541"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-14549","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"601398.SHA\n600028.SHA\n601628.SHA\n600029.SHA\n600048.SHA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-14549"}],"output_ports":[{"name":"data","node_id":"-14549"}],"cacheable":true,"seq_num":4,"comment":"预测数据,用于回测和模拟","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='638,561,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='378,-312,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-215' Position='381,188,200,200'/><node_position Node='-222' Position='385,280,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='1128,897,200,200'/><node_position Node='-209' Position='447,764,200,200'/><node_position Node='-216' Position='1272,747,200,200'/><node_position Node='-214' Position='-52,530,200,200'/><node_position Node='-332' Position='-592,536,200,200'/><node_position Node='-320' Position='-775,451,200,200'/><node_position Node='-293' Position='-943,381,200,200'/><node_position Node='-259' Position='-1127,302,200,200'/><node_position Node='-14841' Position='-1126,215,200,200'/><node_position Node='-14806' Position='-1128,125,200,200'/><node_position Node='-14834' Position='-1128,59,200,200'/><node_position Node='-218' Position='-1130,-17,200,200'/><node_position Node='-446' Position='-1129,-109,200,200'/><node_position Node='-403' Position='-1128,-280,200,200'/><node_position Node='-210' Position='-1061,-453,200,200'/><node_position Node='-408' Position='-1127,-193,200,200'/><node_position Node='-333' Position='-654,242,200,200'/><node_position Node='-2296' Position='-673,155,200,200'/><node_position Node='-2290' Position='-672,51,200,200'/><node_position Node='-289' Position='-811,-98,200,200'/><node_position Node='-620' Position='-689,-257,200,200'/><node_position Node='-300' Position='-547,-168,200,200'/><node_position Node='-307' Position='-536,-76,200,200'/><node_position Node='-2295' Position='-401,-350,200,200'/><node_position Node='-316' Position='-178,-172,200,200'/><node_position Node='-692' Position='-156,-93,200,200'/><node_position Node='-330' Position='-157,-2,200,200'/><node_position Node='-341' Position='-362,234,200,200'/><node_position Node='-14541' Position='-31,630,200,200'/><node_position Node='-14549' Position='109,-301,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-03-20 22:06:49.030565] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-20 22:06:49.046370] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.049074] INFO: moduleinvoker: instruments.v2 运行完成[0.018482s].
[2022-03-20 22:06:49.058187] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-03-20 22:06:49.071092] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.073547] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.015361s].
[2022-03-20 22:06:49.079537] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-03-20 22:06:49.093972] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.096303] INFO: moduleinvoker: input_features.v1 运行完成[0.016798s].
[2022-03-20 22:06:49.114009] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-20 22:06:49.122379] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.123984] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.009996s].
[2022-03-20 22:06:49.131179] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-20 22:06:49.141133] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.142728] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.011545s].
[2022-03-20 22:06:49.153112] INFO: moduleinvoker: join.v3 开始运行..
[2022-03-20 22:06:49.162688] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.165316] INFO: moduleinvoker: join.v3 运行完成[0.012212s].
[2022-03-20 22:06:49.177308] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-20 22:06:49.187542] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.190510] INFO: moduleinvoker: dropnan.v1 运行完成[0.013166s].
[2022-03-20 22:06:49.202198] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2022-03-20 22:06:49.215686] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.314883] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[0.112706s].
[2022-03-20 22:06:49.321512] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-20 22:06:49.354380] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.357057] INFO: moduleinvoker: instruments.v2 运行完成[0.035528s].
[2022-03-20 22:06:49.373744] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-20 22:06:49.381643] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.383192] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.009466s].
[2022-03-20 22:06:49.394120] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-20 22:06:49.433689] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.435379] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.041265s].
[2022-03-20 22:06:49.443832] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-20 22:06:49.452527] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.454328] INFO: moduleinvoker: dropnan.v1 运行完成[0.010489s].
[2022-03-20 22:06:49.463870] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-03-20 22:06:49.476375] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.478898] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.015029s].
[2022-03-20 22:06:49.487742] INFO: moduleinvoker: dl_layer_input.v1 运行完成[0.001739s].
[2022-03-20 22:06:49.507170] INFO: moduleinvoker: dl_layer_reshape.v1 运行完成[0.012405s].
[2022-03-20 22:06:49.528657] INFO: moduleinvoker: dl_layer_conv2d.v1 运行完成[0.014574s].
[2022-03-20 22:06:49.545973] INFO: moduleinvoker: dl_layer_reshape.v1 运行完成[0.010311s].
[2022-03-20 22:06:49.698118] INFO: moduleinvoker: dl_layer_lstm.v1 运行完成[0.14374s].
[2022-03-20 22:06:49.709133] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.003721s].
[2022-03-20 22:06:49.732337] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.015952s].
[2022-03-20 22:06:49.743754] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.003474s].
[2022-03-20 22:06:49.759815] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.009778s].
[2022-03-20 22:06:49.797190] INFO: moduleinvoker: cached.v3 开始运行..
[2022-03-20 22:06:49.848436] INFO: moduleinvoker: cached.v3 运行完成[0.051249s].
[2022-03-20 22:06:49.850826] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.086046s].
[2022-03-20 22:06:49.857993] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-20 22:06:49.866646] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.868807] INFO: moduleinvoker: instruments.v2 运行完成[0.01082s].
[2022-03-20 22:06:49.880649] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-03-20 22:06:49.888056] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.889865] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.009231s].
[2022-03-20 22:06:49.894675] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-03-20 22:06:49.902103] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.903742] INFO: moduleinvoker: input_features.v1 运行完成[0.009073s].
[2022-03-20 22:06:49.923883] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-20 22:06:49.950528] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.954869] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.030991s].
[2022-03-20 22:06:49.969814] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-20 22:06:49.978653] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:49.980226] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010481s].
[2022-03-20 22:06:49.993150] INFO: moduleinvoker: join.v3 开始运行..
[2022-03-20 22:06:50.009768] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:50.011872] INFO: moduleinvoker: join.v3 运行完成[0.018726s].
[2022-03-20 22:06:50.021346] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-20 22:06:50.045025] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:50.047322] INFO: moduleinvoker: dropnan.v1 运行完成[0.025963s].
[2022-03-20 22:06:50.067354] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-03-20 22:06:50.082404] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:06:50.085036] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.0177s].
[2022-03-20 22:06:50.091660] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2022-03-20 22:06:50.476770] INFO: dl_model_train: 准备训练,训练样本个数:41400,迭代次数:10
[2022-03-20 22:07:42.169856] INFO: dl_model_train: 训练结束,耗时:51.69s
[2022-03-20 22:07:42.212801] INFO: moduleinvoker: dl_model_train.v1 运行完成[52.121171s].
[2022-03-20 22:07:42.221037] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-20 22:07:42.234095] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:07:42.235868] INFO: moduleinvoker: instruments.v2 运行完成[0.014841s].
[2022-03-20 22:07:42.253268] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-20 22:07:42.262669] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:07:42.265305] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012059s].
[2022-03-20 22:07:42.276166] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-20 22:07:42.283779] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:07:42.286414] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010236s].
[2022-03-20 22:07:42.298674] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-20 22:07:42.311116] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:07:42.313809] INFO: moduleinvoker: dropnan.v1 运行完成[0.015137s].
[2022-03-20 22:07:42.338533] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-03-20 22:07:42.348076] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:07:42.350638] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.012119s].
[2022-03-20 22:07:42.356807] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2022-03-20 22:07:43.265684] INFO: moduleinvoker: dl_model_predict.v1 运行完成[0.908882s].
[2022-03-20 22:07:43.293872] INFO: moduleinvoker: cached.v3 开始运行..
[2022-03-20 22:07:43.514284] INFO: moduleinvoker: cached.v3 运行完成[0.220418s].
[2022-03-20 22:07:43.529654] INFO: moduleinvoker: cached.v3 开始运行..
[2022-03-20 22:07:43.664701] INFO: moduleinvoker: cached.v3 运行完成[0.13503s].
[2022-03-20 22:07:43.681966] INFO: moduleinvoker: join.v3 开始运行..
[2022-03-20 22:07:46.172356] INFO: join: 行数=6447515/1515/1289503, 耗时=1.123823s
[2022-03-20 22:07:46.195690] INFO: join: 最终行数: 6447515
[2022-03-20 22:07:46.205850] INFO: moduleinvoker: join.v3 运行完成[2.523871s].
[2022-03-20 22:07:46.221374] INFO: moduleinvoker: sort.v4 开始运行..
[2022-03-20 22:07:53.594831] INFO: moduleinvoker: sort.v4 运行完成[7.373452s].
[2022-03-20 22:07:53.823113] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-03-20 22:07:53.833677] INFO: backtest: biglearning backtest:V8.6.2
[2022-03-20 22:07:53.835137] INFO: backtest: product_type:stock by specified
[2022-03-20 22:07:54.037603] INFO: moduleinvoker: cached.v2 开始运行..
[2022-03-20 22:07:54.048403] INFO: moduleinvoker: 命中缓存
[2022-03-20 22:07:54.051676] INFO: moduleinvoker: cached.v2 运行完成[0.014115s].
[2022-03-20 22:07:56.605117] INFO: algo: TradingAlgorithm V1.8.7
[2022-03-20 22:07:58.554314] INFO: algo: trading transform...
[2022-03-20 22:08:04.959564] INFO: algo: handle_splits get splits [dt:2021-04-20 00:00:00+00:00] [asset:Equity(5603 [603385.SHA]), ratio:0.9798320531845093]
[2022-03-20 22:08:04.961984] INFO: Position: position stock handle split[sid:5603, orig_amount:3100, new_amount:3163.0, orig_cost:11.800004859210205, new_cost:11.562, ratio:0.9798320531845093, last_sale_price:11.660000801086426]
[2022-03-20 22:08:04.963967] INFO: Position: after split: PositionStock(asset:Equity(5603 [603385.SHA]), amount:3163.0, cost_basis:11.562, last_sale_price:11.899999618530273)
[2022-03-20 22:08:04.965560] INFO: Position: returning cash: 9.4155
[2022-03-20 22:08:06.836920] INFO: algo: handle_splits get splits [dt:2021-05-28 00:00:00+00:00] [asset:Equity(514 [300462.SZA]), ratio:0.9876540899276733]
[2022-03-20 22:08:06.838567] INFO: algo: handle_splits get splits [dt:2021-05-28 00:00:00+00:00] [asset:Equity(3749 [603303.SHA]), ratio:0.9806948900222778]
[2022-03-20 22:08:06.839871] INFO: algo: handle_splits get splits [dt:2021-05-28 00:00:00+00:00] [asset:Equity(4678 [300552.SZA]), ratio:0.981345534324646]
[2022-03-20 22:08:06.841108] INFO: Position: position stock handle split[sid:514, orig_amount:7300, new_amount:7391.0, orig_cost:11.510006453083202, new_cost:11.3679, ratio:0.9876540899276733, last_sale_price:11.999998092651367]
[2022-03-20 22:08:06.842252] INFO: Position: after split: PositionStock(asset:Equity(514 [300462.SZA]), amount:7391.0, cost_basis:11.3679, last_sale_price:12.15000057220459)
[2022-03-20 22:08:06.843256] INFO: Position: returning cash: 3.0207
[2022-03-20 22:08:06.844339] INFO: Position: position stock handle split[sid:3749, orig_amount:2800, new_amount:2855.0, orig_cost:13.060001857270144, new_cost:12.8079, ratio:0.9806948900222778, last_sale_price:12.69999885559082]
[2022-03-20 22:08:06.845838] INFO: Position: after split: PositionStock(asset:Equity(3749 [603303.SHA]), amount:2855.0, cost_basis:12.8079, last_sale_price:12.949999809265137)
[2022-03-20 22:08:06.847515] INFO: Position: returning cash: 1.5034
[2022-03-20 22:08:06.849450] INFO: Position: position stock handle split[sid:4678, orig_amount:3800, new_amount:3872.0, orig_cost:32.11000715114687, new_cost:31.511, ratio:0.981345534324646, last_sale_price:32.09000015258789]
[2022-03-20 22:08:06.851400] INFO: Position: after split: PositionStock(asset:Equity(4678 [300552.SZA]), amount:3872.0, cost_basis:31.511, last_sale_price:32.70000076293945)
[2022-03-20 22:08:06.852865] INFO: Position: returning cash: 7.524
[2022-03-20 22:08:07.320042] INFO: algo: handle_splits get splits [dt:2021-06-08 00:00:00+00:00] [asset:Equity(4190 [002730.SZA]), ratio:0.9940072894096375]
[2022-03-20 22:08:07.321577] INFO: algo: handle_splits get splits [dt:2021-06-08 00:00:00+00:00] [asset:Equity(1377 [688529.SHA]), ratio:0.9925429821014404]
[2022-03-20 22:08:07.322834] INFO: Position: position stock handle split[sid:1377, orig_amount:4500, new_amount:4533.0, orig_cost:24.40003055987955, new_cost:24.2181, ratio:0.9925429821014404, last_sale_price:25.289995193481445]
[2022-03-20 22:08:07.323834] INFO: Position: after split: PositionStock(asset:Equity(1377 [688529.SHA]), amount:4533.0, cost_basis:24.2181, last_sale_price:25.479999542236328)
[2022-03-20 22:08:07.324751] INFO: Position: returning cash: 20.4518
[2022-03-20 22:08:07.509969] INFO: algo: handle_splits get splits [dt:2021-06-11 00:00:00+00:00] [asset:Equity(3409 [300523.SZA]), ratio:0.9967781901359558]
[2022-03-20 22:08:07.512018] INFO: algo: handle_splits get splits [dt:2021-06-11 00:00:00+00:00] [asset:Equity(3955 [600798.SHA]), ratio:0.9893805980682373]
[2022-03-20 22:08:07.514116] INFO: Position: position stock handle split[sid:3409, orig_amount:2600, new_amount:2608.0, orig_cost:23.99000310052421, new_cost:23.9127, ratio:0.9967781901359558, last_sale_price:24.750001907348633]
[2022-03-20 22:08:07.516012] INFO: Position: after split: PositionStock(asset:Equity(3409 [300523.SZA]), amount:2608.0, cost_basis:23.9127, last_sale_price:24.829999923706055)
[2022-03-20 22:08:07.517783] INFO: Position: returning cash: 9.9936
[2022-03-20 22:08:07.519452] INFO: Position: position stock handle split[sid:3955, orig_amount:6200, new_amount:6266.0, orig_cost:5.319999717431042, new_cost:5.2635, ratio:0.9893805980682373, last_sale_price:5.590000629425049]
[2022-03-20 22:08:07.520704] INFO: Position: after split: PositionStock(asset:Equity(3955 [600798.SHA]), amount:6266.0, cost_basis:5.2635, last_sale_price:5.650000095367432)
[2022-03-20 22:08:07.521877] INFO: Position: returning cash: 3.0576
[2022-03-20 22:08:08.031062] INFO: algo: handle_splits get splits [dt:2021-06-22 00:00:00+00:00] [asset:Equity(4637 [002698.SZA]), ratio:0.9844356775283813]
[2022-03-20 22:08:08.032670] INFO: Position: position stock handle split[sid:4637, orig_amount:3800, new_amount:3860.0, orig_cost:12.640003140518548, new_cost:12.4433, ratio:0.9844356775283813, last_sale_price:12.649998664855957]
[2022-03-20 22:08:08.033901] INFO: Position: after split: PositionStock(asset:Equity(4637 [002698.SZA]), amount:3860.0, cost_basis:12.4433, last_sale_price:12.850000381469727)
[2022-03-20 22:08:08.035084] INFO: Position: returning cash: 1.006
[2022-03-20 22:08:08.342474] INFO: algo: handle_splits get splits [dt:2021-06-28 00:00:00+00:00] [asset:Equity(4589 [600353.SHA]), ratio:0.9946524500846863]
[2022-03-20 22:08:08.343934] INFO: Position: position stock handle split[sid:4589, orig_amount:20100, new_amount:20208.0, orig_cost:5.320001013778358, new_cost:5.2916, ratio:0.9946524500846863, last_sale_price:5.580000400543213]
[2022-03-20 22:08:08.345471] INFO: Position: after split: PositionStock(asset:Equity(4589 [600353.SHA]), amount:20208.0, cost_basis:5.2916, last_sale_price:5.610000133514404)
[2022-03-20 22:08:08.347274] INFO: Position: returning cash: 0.355
[2022-03-20 22:08:09.043901] INFO: algo: handle_splits get splits [dt:2021-07-12 00:00:00+00:00] [asset:Equity(3307 [600789.SHA]), ratio:0.9931128621101379]
[2022-03-20 22:08:09.135412] INFO: algo: handle_splits get splits [dt:2021-07-13 00:00:00+00:00] [asset:Equity(4356 [600148.SHA]), ratio:0.9861111044883728]
[2022-03-20 22:08:09.136955] INFO: algo: handle_splits get splits [dt:2021-07-13 00:00:00+00:00] [asset:Equity(170 [002835.SZA]), ratio:0.9920635223388672]
[2022-03-20 22:08:09.138223] INFO: Position: position stock handle split[sid:4356, orig_amount:4300, new_amount:4360.0, orig_cost:12.990021075091633, new_cost:12.8096, ratio:0.9861111044883728, last_sale_price:12.779999732971191]
[2022-03-20 22:08:09.139302] INFO: Position: after split: PositionStock(asset:Equity(4356 [600148.SHA]), amount:4360.0, cost_basis:12.8096, last_sale_price:12.960000038146973)
[2022-03-20 22:08:09.140302] INFO: Position: returning cash: 7.2004
[2022-03-20 22:08:09.141345] INFO: Position: position stock handle split[sid:170, orig_amount:5700, new_amount:5745.0, orig_cost:12.180000599411708, new_cost:12.0833, ratio:0.9920635223388672, last_sale_price:12.499999046325684]
[2022-03-20 22:08:09.142375] INFO: Position: after split: PositionStock(asset:Equity(170 [002835.SZA]), amount:5745.0, cost_basis:12.0833, last_sale_price:12.599998474121094)
[2022-03-20 22:08:09.143362] INFO: Position: returning cash: 7.4978
[2022-03-20 22:08:09.378330] INFO: algo: handle_splits get splits [dt:2021-07-16 00:00:00+00:00] [asset:Equity(953 [600900.SHA]), ratio:0.9654833078384399]
[2022-03-20 22:08:11.331594] INFO: algo: handle_splits get splits [dt:2021-08-27 00:00:00+00:00] [asset:Equity(4154 [300560.SZA]), ratio:0.9884614944458008]
[2022-03-20 22:08:11.333127] INFO: Position: position stock handle split[sid:4154, orig_amount:2500, new_amount:2529.0, orig_cost:15.350000115309493, new_cost:15.1729, ratio:0.9884614944458008, last_sale_price:15.419999122619629]
[2022-03-20 22:08:11.334202] INFO: Position: after split: PositionStock(asset:Equity(4154 [300560.SZA]), amount:2529.0, cost_basis:15.1729, last_sale_price:15.59999942779541)
[2022-03-20 22:08:11.335169] INFO: Position: returning cash: 2.8217
[2022-03-20 22:08:17.012333] INFO: Performance: Simulated 243 trading days out of 243.
[2022-03-20 22:08:17.014081] INFO: Performance: first open: 2021-01-04 09:30:00+00:00
[2022-03-20 22:08:17.015467] INFO: Performance: last close: 2021-12-31 15:00:00+00:00
[2022-03-20 22:08:32.243415] INFO: moduleinvoker: backtest.v8 运行完成[38.420309s].
[2022-03-20 22:08:32.245472] INFO: moduleinvoker: trade.v4 运行完成[38.638944s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-f9c98cb495a340e79c5234756333805c"}/bigcharts-data-end
Epoch 1/10
1/21 [>.............................] - ETA: 1:36 - loss: 1.0283 - accuracy: 0.4814 2/21 [=>............................] - ETA: 4s - loss: 1.0122 - accuracy: 0.4866 3/21 [===>..........................] - ETA: 4s - loss: 1.0037 - accuracy: 0.4899 4/21 [====>.........................] - ETA: 4s - loss: 1.0009 - accuracy: 0.4910 5/21 [======>.......................] - ETA: 3s - loss: 0.9973 - accuracy: 0.4919 6/21 [=======>......................] - ETA: 3s - loss: 0.9942 - accuracy: 0.4930 7/21 [=========>....................] - ETA: 3s - loss: 0.9909 - accuracy: 0.4937 8/21 [==========>...................] - ETA: 3s - loss: 0.9879 - accuracy: 0.4942 9/21 [===========>..................] - ETA: 2s - loss: 0.9849 - accuracy: 0.494810/21 [=============>................] - ETA: 2s - loss: 0.9821 - accuracy: 0.495011/21 [==============>...............] - ETA: 2s - loss: 0.9795 - accuracy: 0.495312/21 [================>.............] - ETA: 2s - loss: 0.9768 - accuracy: 0.495613/21 [=================>............] - ETA: 1s - loss: 0.9742 - accuracy: 0.496014/21 [===================>..........] - ETA: 1s - loss: 0.9715 - accuracy: 0.496315/21 [====================>.........] - ETA: 1s - loss: 0.9689 - accuracy: 0.496616/21 [=====================>........] - ETA: 1s - loss: 0.9664 - accuracy: 0.496917/21 [=======================>......] - ETA: 0s - loss: 0.9639 - accuracy: 0.497218/21 [========================>.....] - ETA: 0s - loss: 0.9616 - accuracy: 0.497519/21 [==========================>...] - ETA: 0s - loss: 0.9593 - accuracy: 0.497720/21 [===========================>..] - ETA: 0s - loss: 0.9571 - accuracy: 0.497821/21 [==============================] - ETA: 0s - loss: 0.9551 - accuracy: 0.498021/21 [==============================] - 9s 222ms/step - loss: 0.9532 - accuracy: 0.4981
Epoch 2/10
1/21 [>.............................] - ETA: 4s - loss: 0.8426 - accuracy: 0.4897 2/21 [=>............................] - ETA: 4s - loss: 0.8351 - accuracy: 0.4960 3/21 [===>..........................] - ETA: 3s - loss: 0.8319 - accuracy: 0.4977 4/21 [====>.........................] - ETA: 3s - loss: 0.8300 - accuracy: 0.4984 5/21 [======>.......................] - ETA: 3s - loss: 0.8290 - accuracy: 0.4982 6/21 [=======>......................] - ETA: 3s - loss: 0.8276 - accuracy: 0.4986 7/21 [=========>....................] - ETA: 3s - loss: 0.8262 - accuracy: 0.4989 8/21 [==========>...................] - ETA: 2s - loss: 0.8251 - accuracy: 0.4990 9/21 [===========>..................] - ETA: 2s - loss: 0.8240 - accuracy: 0.499210/21 [=============>................] - ETA: 2s - loss: 0.8227 - accuracy: 0.499611/21 [==============>...............] - ETA: 2s - loss: 0.8216 - accuracy: 0.499712/21 [================>.............] - ETA: 1s - loss: 0.8204 - accuracy: 0.499913/21 [=================>............] - ETA: 1s - loss: 0.8192 - accuracy: 0.499914/21 [===================>..........] - ETA: 1s - loss: 0.8182 - accuracy: 0.500015/21 [====================>.........] - ETA: 1s - loss: 0.8171 - accuracy: 0.500216/21 [=====================>........] - ETA: 1s - loss: 0.8160 - accuracy: 0.500417/21 [=======================>......] - ETA: 0s - loss: 0.8149 - accuracy: 0.500618/21 [========================>.....] - ETA: 0s - loss: 0.8139 - accuracy: 0.500719/21 [==========================>...] - ETA: 0s - loss: 0.8129 - accuracy: 0.500820/21 [===========================>..] - ETA: 0s - loss: 0.8120 - accuracy: 0.500921/21 [==============================] - ETA: 0s - loss: 0.8111 - accuracy: 0.501021/21 [==============================] - 5s 217ms/step - loss: 0.8103 - accuracy: 0.5011
Epoch 3/10
1/21 [>.............................] - ETA: 4s - loss: 0.7419 - accuracy: 0.5190 2/21 [=>............................] - ETA: 3s - loss: 0.7466 - accuracy: 0.5135 3/21 [===>..........................] - ETA: 3s - loss: 0.7502 - accuracy: 0.5109 4/21 [====>.........................] - ETA: 3s - loss: 0.7525 - accuracy: 0.5085 5/21 [======>.......................] - ETA: 3s - loss: 0.7533 - accuracy: 0.5075 6/21 [=======>......................] - ETA: 3s - loss: 0.7534 - accuracy: 0.5072 7/21 [=========>....................] - ETA: 3s - loss: 0.7536 - accuracy: 0.5066 8/21 [==========>...................] - ETA: 2s - loss: 0.7537 - accuracy: 0.5062 9/21 [===========>..................] - ETA: 2s - loss: 0.7537 - accuracy: 0.506010/21 [=============>................] - ETA: 2s - loss: 0.7536 - accuracy: 0.505811/21 [==============>...............] - ETA: 2s - loss: 0.7534 - accuracy: 0.505712/21 [================>.............] - ETA: 1s - loss: 0.7531 - accuracy: 0.505513/21 [=================>............] - ETA: 1s - loss: 0.7529 - accuracy: 0.505314/21 [===================>..........] - ETA: 1s - loss: 0.7527 - accuracy: 0.505115/21 [====================>.........] - ETA: 1s - loss: 0.7525 - accuracy: 0.504916/21 [=====================>........] - ETA: 1s - loss: 0.7522 - accuracy: 0.504817/21 [=======================>......] - ETA: 0s - loss: 0.7520 - accuracy: 0.504618/21 [========================>.....] - ETA: 0s - loss: 0.7518 - accuracy: 0.504419/21 [==========================>...] - ETA: 0s - loss: 0.7517 - accuracy: 0.504220/21 [===========================>..] - ETA: 0s - loss: 0.7515 - accuracy: 0.504021/21 [==============================] - ETA: 0s - loss: 0.7513 - accuracy: 0.503821/21 [==============================] - 4s 213ms/step - loss: 0.7511 - accuracy: 0.5037
Epoch 4/10
1/21 [>.............................] - ETA: 4s - loss: 0.7369 - accuracy: 0.4873 2/21 [=>............................] - ETA: 4s - loss: 0.7335 - accuracy: 0.4929 3/21 [===>..........................] - ETA: 3s - loss: 0.7330 - accuracy: 0.4942 4/21 [====>.........................] - ETA: 3s - loss: 0.7322 - accuracy: 0.4957 5/21 [======>.......................] - ETA: 3s - loss: 0.7317 - accuracy: 0.4970 6/21 [=======>......................] - ETA: 3s - loss: 0.7314 - accuracy: 0.4974 7/21 [=========>....................] - ETA: 3s - loss: 0.7311 - accuracy: 0.4976 8/21 [==========>...................] - ETA: 2s - loss: 0.7308 - accuracy: 0.4977 9/21 [===========>..................] - ETA: 2s - loss: 0.7305 - accuracy: 0.498010/21 [=============>................] - ETA: 2s - loss: 0.7302 - accuracy: 0.498211/21 [==============>...............] - ETA: 2s - loss: 0.7300 - accuracy: 0.498412/21 [================>.............] - ETA: 2s - loss: 0.7297 - accuracy: 0.498713/21 [=================>............] - ETA: 1s - loss: 0.7295 - accuracy: 0.499014/21 [===================>..........] - ETA: 1s - loss: 0.7292 - accuracy: 0.499315/21 [====================>.........] - ETA: 1s - loss: 0.7289 - accuracy: 0.499716/21 [=====================>........] - ETA: 1s - loss: 0.7286 - accuracy: 0.500017/21 [=======================>......] - ETA: 0s - loss: 0.7284 - accuracy: 0.500418/21 [========================>.....] - ETA: 0s - loss: 0.7281 - accuracy: 0.500719/21 [==========================>...] - ETA: 0s - loss: 0.7279 - accuracy: 0.501020/21 [===========================>..] - ETA: 0s - loss: 0.7276 - accuracy: 0.501221/21 [==============================] - ETA: 0s - loss: 0.7274 - accuracy: 0.501421/21 [==============================] - 5s 215ms/step - loss: 0.7272 - accuracy: 0.5015
Epoch 5/10
1/21 [>.............................] - ETA: 4s - loss: 0.7176 - accuracy: 0.5024 2/21 [=>............................] - ETA: 4s - loss: 0.7172 - accuracy: 0.5026 3/21 [===>..........................] - ETA: 4s - loss: 0.7166 - accuracy: 0.5018 4/21 [====>.........................] - ETA: 3s - loss: 0.7163 - accuracy: 0.5023 5/21 [======>.......................] - ETA: 3s - loss: 0.7163 - accuracy: 0.5019 6/21 [=======>......................] - ETA: 3s - loss: 0.7164 - accuracy: 0.5021 7/21 [=========>....................] - ETA: 3s - loss: 0.7164 - accuracy: 0.5022 8/21 [==========>...................] - ETA: 2s - loss: 0.7164 - accuracy: 0.5025 9/21 [===========>..................] - ETA: 2s - loss: 0.7164 - accuracy: 0.502610/21 [=============>................] - ETA: 2s - loss: 0.7163 - accuracy: 0.502511/21 [==============>...............] - ETA: 2s - loss: 0.7162 - accuracy: 0.502412/21 [================>.............] - ETA: 1s - loss: 0.7161 - accuracy: 0.502213/21 [=================>............] - ETA: 1s - loss: 0.7161 - accuracy: 0.502014/21 [===================>..........] - ETA: 1s - loss: 0.7159 - accuracy: 0.502015/21 [====================>.........] - ETA: 1s - loss: 0.7157 - accuracy: 0.502016/21 [=====================>........] - ETA: 1s - loss: 0.7156 - accuracy: 0.502117/21 [=======================>......] - ETA: 0s - loss: 0.7155 - accuracy: 0.502118/21 [========================>.....] - ETA: 0s - loss: 0.7154 - accuracy: 0.502119/21 [==========================>...] - ETA: 0s - loss: 0.7153 - accuracy: 0.502120/21 [===========================>..] - ETA: 0s - loss: 0.7152 - accuracy: 0.502221/21 [==============================] - ETA: 0s - loss: 0.7151 - accuracy: 0.502221/21 [==============================] - 4s 211ms/step - loss: 0.7150 - accuracy: 0.5023
Epoch 6/10
1/21 [>.............................] - ETA: 4s - loss: 0.7061 - accuracy: 0.5142 2/21 [=>............................] - ETA: 4s - loss: 0.7095 - accuracy: 0.5066 3/21 [===>..........................] - ETA: 4s - loss: 0.7103 - accuracy: 0.5050 4/21 [====>.........................] - ETA: 3s - loss: 0.7104 - accuracy: 0.5047 5/21 [======>.......................] - ETA: 3s - loss: 0.7105 - accuracy: 0.5040 6/21 [=======>......................] - ETA: 3s - loss: 0.7106 - accuracy: 0.5034 7/21 [=========>....................] - ETA: 3s - loss: 0.7107 - accuracy: 0.5026 8/21 [==========>...................] - ETA: 3s - loss: 0.7108 - accuracy: 0.5019 9/21 [===========>..................] - ETA: 2s - loss: 0.7109 - accuracy: 0.501310/21 [=============>................] - ETA: 2s - loss: 0.7109 - accuracy: 0.501011/21 [==============>...............] - ETA: 2s - loss: 0.7108 - accuracy: 0.500912/21 [================>.............] - ETA: 2s - loss: 0.7108 - accuracy: 0.500813/21 [=================>............] - ETA: 1s - loss: 0.7107 - accuracy: 0.500614/21 [===================>..........] - ETA: 1s - loss: 0.7107 - accuracy: 0.500615/21 [====================>.........] - ETA: 1s - loss: 0.7106 - accuracy: 0.500616/21 [=====================>........] - ETA: 1s - loss: 0.7105 - accuracy: 0.500617/21 [=======================>......] - ETA: 0s - loss: 0.7104 - accuracy: 0.500518/21 [========================>.....] - ETA: 0s - loss: 0.7103 - accuracy: 0.500519/21 [==========================>...] - ETA: 0s - loss: 0.7102 - accuracy: 0.500620/21 [===========================>..] - ETA: 0s - loss: 0.7101 - accuracy: 0.500621/21 [==============================] - ETA: 0s - loss: 0.7101 - accuracy: 0.500721/21 [==============================] - 5s 222ms/step - loss: 0.7100 - accuracy: 0.5007
Epoch 7/10
1/21 [>.............................] - ETA: 4s - loss: 0.7048 - accuracy: 0.5039 2/21 [=>............................] - ETA: 4s - loss: 0.7051 - accuracy: 0.5037 3/21 [===>..........................] - ETA: 4s - loss: 0.7056 - accuracy: 0.5036 4/21 [====>.........................] - ETA: 3s - loss: 0.7057 - accuracy: 0.5028 5/21 [======>.......................] - ETA: 3s - loss: 0.7058 - accuracy: 0.5027 6/21 [=======>......................] - ETA: 3s - loss: 0.7059 - accuracy: 0.5028 7/21 [=========>....................] - ETA: 3s - loss: 0.7059 - accuracy: 0.5028 8/21 [==========>...................] - ETA: 3s - loss: 0.7059 - accuracy: 0.5028 9/21 [===========>..................] - ETA: 2s - loss: 0.7058 - accuracy: 0.503110/21 [=============>................] - ETA: 2s - loss: 0.7057 - accuracy: 0.503211/21 [==============>...............] - ETA: 2s - loss: 0.7056 - accuracy: 0.503312/21 [================>.............] - ETA: 2s - loss: 0.7056 - accuracy: 0.503213/21 [=================>............] - ETA: 1s - loss: 0.7055 - accuracy: 0.503114/21 [===================>..........] - ETA: 1s - loss: 0.7054 - accuracy: 0.503115/21 [====================>.........] - ETA: 1s - loss: 0.7053 - accuracy: 0.503116/21 [=====================>........] - ETA: 1s - loss: 0.7052 - accuracy: 0.503017/21 [=======================>......] - ETA: 0s - loss: 0.7051 - accuracy: 0.503118/21 [========================>.....] - ETA: 0s - loss: 0.7050 - accuracy: 0.503119/21 [==========================>...] - ETA: 0s - loss: 0.7049 - accuracy: 0.503020/21 [===========================>..] - ETA: 0s - loss: 0.7048 - accuracy: 0.503021/21 [==============================] - ETA: 0s - loss: 0.7048 - accuracy: 0.503021/21 [==============================] - 5s 227ms/step - loss: 0.7047 - accuracy: 0.5029
Epoch 8/10
1/21 [>.............................] - ETA: 4s - loss: 0.7018 - accuracy: 0.5186 2/21 [=>............................] - ETA: 4s - loss: 0.7027 - accuracy: 0.5146 3/21 [===>..........................] - ETA: 4s - loss: 0.7025 - accuracy: 0.5141 4/21 [====>.........................] - ETA: 3s - loss: 0.7022 - accuracy: 0.5142 5/21 [======>.......................] - ETA: 3s - loss: 0.7022 - accuracy: 0.5142 6/21 [=======>......................] - ETA: 3s - loss: 0.7023 - accuracy: 0.5137 7/21 [=========>....................] - ETA: 3s - loss: 0.7024 - accuracy: 0.5131 8/21 [==========>...................] - ETA: 3s - loss: 0.7024 - accuracy: 0.5123 9/21 [===========>..................] - ETA: 2s - loss: 0.7024 - accuracy: 0.511710/21 [=============>................] - ETA: 2s - loss: 0.7024 - accuracy: 0.511311/21 [==============>...............] - ETA: 2s - loss: 0.7024 - accuracy: 0.511012/21 [================>.............] - ETA: 2s - loss: 0.7024 - accuracy: 0.510613/21 [=================>............] - ETA: 1s - loss: 0.7024 - accuracy: 0.510214/21 [===================>..........] - ETA: 1s - loss: 0.7024 - accuracy: 0.509915/21 [====================>.........] - ETA: 1s - loss: 0.7024 - accuracy: 0.509716/21 [=====================>........] - ETA: 1s - loss: 0.7024 - accuracy: 0.509417/21 [=======================>......] - ETA: 0s - loss: 0.7024 - accuracy: 0.509118/21 [========================>.....] - ETA: 0s - loss: 0.7024 - accuracy: 0.508919/21 [==========================>...] - ETA: 0s - loss: 0.7025 - accuracy: 0.508720/21 [===========================>..] - ETA: 0s - loss: 0.7025 - accuracy: 0.508421/21 [==============================] - ETA: 0s - loss: 0.7025 - accuracy: 0.508221/21 [==============================] - 5s 230ms/step - loss: 0.7025 - accuracy: 0.5080
Epoch 9/10
1/21 [>.............................] - ETA: 4s - loss: 0.7012 - accuracy: 0.5000 2/21 [=>............................] - ETA: 4s - loss: 0.7015 - accuracy: 0.5006 3/21 [===>..........................] - ETA: 4s - loss: 0.7017 - accuracy: 0.5005 4/21 [====>.........................] - ETA: 4s - loss: 0.7015 - accuracy: 0.5013 5/21 [======>.......................] - ETA: 3s - loss: 0.7013 - accuracy: 0.5021 6/21 [=======>......................] - ETA: 3s - loss: 0.7011 - accuracy: 0.5030 7/21 [=========>....................] - ETA: 3s - loss: 0.7010 - accuracy: 0.5034 8/21 [==========>...................] - ETA: 3s - loss: 0.7009 - accuracy: 0.5035 9/21 [===========>..................] - ETA: 3s - loss: 0.7009 - accuracy: 0.503410/21 [=============>................] - ETA: 2s - loss: 0.7009 - accuracy: 0.503311/21 [==============>...............] - ETA: 2s - loss: 0.7009 - accuracy: 0.503012/21 [================>.............] - ETA: 2s - loss: 0.7009 - accuracy: 0.502813/21 [=================>............] - ETA: 2s - loss: 0.7008 - accuracy: 0.502814/21 [===================>..........] - ETA: 1s - loss: 0.7008 - accuracy: 0.502715/21 [====================>.........] - ETA: 1s - loss: 0.7008 - accuracy: 0.502616/21 [=====================>........] - ETA: 1s - loss: 0.7007 - accuracy: 0.502517/21 [=======================>......] - ETA: 0s - loss: 0.7007 - accuracy: 0.502518/21 [========================>.....] - ETA: 0s - loss: 0.7007 - accuracy: 0.502419/21 [==========================>...] - ETA: 0s - loss: 0.7007 - accuracy: 0.502320/21 [===========================>..] - ETA: 0s - loss: 0.7006 - accuracy: 0.502321/21 [==============================] - ETA: 0s - loss: 0.7006 - accuracy: 0.502321/21 [==============================] - 5s 239ms/step - loss: 0.7006 - accuracy: 0.5022
Epoch 10/10
1/21 [>.............................] - ETA: 4s - loss: 0.7004 - accuracy: 0.5078 2/21 [=>............................] - ETA: 4s - loss: 0.7000 - accuracy: 0.5063 3/21 [===>..........................] - ETA: 4s - loss: 0.6996 - accuracy: 0.5063 4/21 [====>.........................] - ETA: 4s - loss: 0.6995 - accuracy: 0.5066 5/21 [======>.......................] - ETA: 3s - loss: 0.6994 - accuracy: 0.5063 6/21 [=======>......................] - ETA: 3s - loss: 0.6995 - accuracy: 0.5058 7/21 [=========>....................] - ETA: 3s - loss: 0.6996 - accuracy: 0.5056 8/21 [==========>...................] - ETA: 3s - loss: 0.6997 - accuracy: 0.5053 9/21 [===========>..................] - ETA: 2s - loss: 0.6997 - accuracy: 0.504910/21 [=============>................] - ETA: 2s - loss: 0.6997 - accuracy: 0.504611/21 [==============>...............] - ETA: 2s - loss: 0.6997 - accuracy: 0.504112/21 [================>.............] - ETA: 2s - loss: 0.6997 - accuracy: 0.503713/21 [=================>............] - ETA: 2s - loss: 0.6997 - accuracy: 0.503414/21 [===================>..........] - ETA: 1s - loss: 0.6997 - accuracy: 0.503115/21 [====================>.........] - ETA: 1s - loss: 0.6997 - accuracy: 0.502816/21 [=====================>........] - ETA: 1s - loss: 0.6998 - accuracy: 0.502517/21 [=======================>......] - ETA: 0s - loss: 0.6998 - accuracy: 0.502418/21 [========================>.....] - ETA: 0s - loss: 0.6998 - accuracy: 0.502319/21 [==========================>...] - ETA: 0s - loss: 0.6998 - accuracy: 0.502220/21 [===========================>..] - ETA: 0s - loss: 0.6998 - accuracy: 0.502221/21 [==============================] - ETA: 0s - loss: 0.6998 - accuracy: 0.502221/21 [==============================] - 5s 239ms/step - loss: 0.6997 - accuracy: 0.5022
1/1 - 0s
DataSource(0e6d0a6ad257415d99ba0b8c40539b39T)
2021-01-18 LSTM预测大盘上涨小于0.5,全仓卖出
2021-02-23 LSTM预测大盘上涨小于0.5,全仓卖出
2021-02-25 LSTM预测大盘上涨小于0.5,全仓卖出
2021-03-17 LSTM预测大盘上涨小于0.5,全仓卖出
2021-04-26 LSTM预测大盘上涨小于0.5,全仓卖出
2021-08-18 LSTM预测大盘上涨小于0.5,全仓卖出
2021-08-19 LSTM预测大盘上涨小于0.5,全仓卖出
2021-09-02 LSTM预测大盘上涨小于0.5,全仓卖出
2021-09-06 LSTM预测大盘上涨小于0.5,全仓卖出
2021-09-23 LSTM预测大盘上涨小于0.5,全仓卖出
2021-10-12 LSTM预测大盘上涨小于0.5,全仓卖出
2021-12-06 LSTM预测大盘上涨小于0.5,全仓卖出
2021-12-07 LSTM预测大盘上涨小于0.5,全仓卖出
- 收益率52.88%
- 年化收益率55.3%
- 基准收益率-5.2%
- 阿尔法0.59
- 贝塔0.38
- 夏普比率1.95
- 胜率0.51
- 盈亏比1.56
- 收益波动率22.37%
- 信息比率0.13
- 最大回撤15.07%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-4b878be0e6614e69ab31bdfaed133b91"}/bigcharts-data-end