训练集长时间 (5-10年) VS 训练集 短时间 (6个月-1,2年) 会对模型的数据造成怎么样的影响?
长时间: 从05年开始往后 到21年 增加数据 首先是标注的训练数据发生了改变, 其次是 模型中 因子的特征权重发生改变 再然后是 ndcg的评价也发生了改变 最后 整个模型的预测结果也会产生偏差
简单评价:长时间训练 搜索出来的回测结果 回测时间更长,得出结论更稳定 也更容易 过拟合
短时间 从21年开始往前 到20年 增加数据 变化同上 但数据量更少,有可能 NDCG反而提高 收益也更高
简单评价:短时间训练 搜索出来的回测结果 在未来回测更陡峭 收益有可能更高 也更容易欠拟合
05年-16年,13-19年,10-20年都可以试试。
1.好的策略设计思路,能节省你挖掘因子的时间,同时,聚焦某一个领域去钻研,
也更容易找到适配的组合,挖掘出好的因子模型。 (比如追涨的逻辑,就要配合动量因子,做追龙头的逻辑,就要配合波动率因子和收益率因子)
2.因子和策略的表现跟市场是强相关的。
有的年份 小市值股票厉害,风格暴露在小市值上的模型,超额收益更多,有的年份则相反 一类因子其实也只是一种套路或者说一种市场偏好选股风格的集成, 如何去高效利用好这种因子, 才是我们应该去研究的问题。 平常做模型的因子如果想不到在哪来, 可以在因子看板里面去找找。
# 本代码由可视化策略环境自动生成 2022年3月8日 16:49
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
# 回测引擎:初始化函数,只执行一次
def m19_initialize_bigquant_run(context):
# 加载预测数据
context.ranker_prediction = context.options['data'].read_df()
# 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
# 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
# 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
stock_count = 5
# 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
# 设置每只股票占用的最大资金比例
context.max_cash_per_instrument = 0.2
context.options['hold_days'] = 5
# 回测引擎:每日数据处理函数,每天执行一次
def m19_handle_data_bigquant_run(context, data):
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
# 1. 资金分配
# 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
# 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
positions = {e.symbol: p.amount * p.last_sale_price
for e, p in context.portfolio.positions.items()}
# 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
if not is_staging and cash_for_sell > 0:
equities = {e.symbol: e for e, p in context.portfolio.positions.items()}
instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
lambda x: x in equities)])))
for instrument in instruments:
context.order_target(context.symbol(instrument), 0)
cash_for_sell -= positions[instrument]
if cash_for_sell <= 0:
break
# 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
buy_cash_weights = context.stock_weights
buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
for i, instrument in enumerate(buy_instruments):
cash = cash_for_buy * buy_cash_weights[i]
if cash > max_cash_per_instrument - positions.get(instrument, 0):
# 确保股票持仓量不会超过每次股票最大的占用资金量
cash = max_cash_per_instrument - positions.get(instrument, 0)
if cash > 0:
context.order_value(context.symbol(instrument), cash)
# 回测引擎:准备数据,只执行一次
def m19_prepare_bigquant_run(context):
pass
g = T.Graph({
'm1': 'M.instruments.v2',
'm1.start_date': '2005-01-01',
'm1.end_date': '2016-01-01',
'm1.market': 'CN_STOCK_A',
'm1.instrument_list': '',
'm1.max_count': 0,
'm2': 'M.advanced_auto_labeler.v2',
'm2.instruments': T.Graph.OutputPort('m1.data'),
'm2.label_expr': """# #号开始的表示注释
# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
# 添加benchmark_前缀,可使用对应的benchmark数据
# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
shift(close, -5) / shift(open, -1)
# 极值处理:用1%和99%分位的值做clip
clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
# 将分数映射到分类,这里使用20个分类
all_wbins(label, 20)
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
where(shift(high, -1) == shift(low, -1), NaN, label)
""",
'm2.start_date': '',
'm2.end_date': '',
'm2.benchmark': '000300.HIX',
'm2.drop_na_label': True,
'm2.cast_label_int': True,
'm3': 'M.input_features.v1',
'm3.features': """# #号开始的表示注释
# 多个特征,每行一个,可以包含基础特征和衍生特征
return_5
return_10
return_20
avg_amount_0/avg_amount_5
avg_amount_5/avg_amount_20
rank_avg_amount_0/rank_avg_amount_5
rank_avg_amount_5/rank_avg_amount_10
rank_return_0
rank_return_5
rank_return_10
rank_return_0/rank_return_5
rank_return_5/rank_return_10
pe_ttm_0
""",
'm4': 'M.input_features.v1',
'm4.features_ds': T.Graph.OutputPort('m3.data'),
'm4.features': """# #号开始的表示注释
# 多个特征,每行一个,可以包含基础特征和衍生特征
# 未来2天的 收益
day_return_2=(shift(close_0, -2)-shift(open_0, -1))/shift(open_0, -1)
# 未来3天的 收益
day_return_3=(shift(close_0, -3)-shift(open_0, -1))/shift(open_0, -1)
# 未来5天的 收益
day_return_5=(shift(close_0, -5)-shift(open_0, -1))/shift(open_0, -1)""",
'm15': 'M.general_feature_extractor.v7',
'm15.instruments': T.Graph.OutputPort('m1.data'),
'm15.features': T.Graph.OutputPort('m4.data'),
'm15.start_date': '',
'm15.end_date': '',
'm15.before_start_days': 90,
'm16': 'M.derived_feature_extractor.v3',
'm16.input_data': T.Graph.OutputPort('m15.data'),
'm16.features': T.Graph.OutputPort('m4.data'),
'm16.date_col': 'date',
'm16.instrument_col': 'instrument',
'm16.drop_na': False,
'm16.remove_extra_columns': False,
'm7': 'M.join.v3',
'm7.data1': T.Graph.OutputPort('m2.data'),
'm7.data2': T.Graph.OutputPort('m16.data'),
'm7.on': 'date,instrument',
'm7.how': 'inner',
'm7.sort': False,
'm13': 'M.dropnan.v1',
'm13.input_data': T.Graph.OutputPort('m7.data'),
'm6': 'M.stock_ranker_train.v5',
'm6.training_ds': T.Graph.OutputPort('m13.data'),
'm6.features': T.Graph.OutputPort('m3.data'),
'm6.test_ds': T.Graph.OutputPort('m13.data'),
'm6.learning_algorithm': '排序',
'm6.number_of_leaves': 30,
'm6.minimum_docs_per_leaf': 1000,
'm6.number_of_trees': 20,
'm6.learning_rate': 0.1,
'm6.max_bins': 1023,
'm6.feature_fraction': 1,
'm6.m_lazy_run': False,
'm9': 'M.instruments.v2',
'm9.start_date': T.live_run_param('trading_date', '2021-01-01'),
'm9.end_date': T.live_run_param('trading_date', '2021-12-31'),
'm9.market': 'CN_STOCK_A',
'm9.instrument_list': '',
'm9.max_count': 0,
'm17': 'M.general_feature_extractor.v7',
'm17.instruments': T.Graph.OutputPort('m9.data'),
'm17.features': T.Graph.OutputPort('m4.data'),
'm17.start_date': '',
'm17.end_date': '',
'm17.before_start_days': 90,
'm18': 'M.derived_feature_extractor.v3',
'm18.input_data': T.Graph.OutputPort('m17.data'),
'm18.features': T.Graph.OutputPort('m4.data'),
'm18.date_col': 'date',
'm18.instrument_col': 'instrument',
'm18.drop_na': False,
'm18.remove_extra_columns': False,
'm14': 'M.dropnan.v1',
'm14.input_data': T.Graph.OutputPort('m18.data'),
'm8': 'M.stock_ranker_predict.v5',
'm8.model': T.Graph.OutputPort('m6.model'),
'm8.data': T.Graph.OutputPort('m14.data'),
'm8.m_lazy_run': False,
'm19': 'M.trade.v4',
'm19.instruments': T.Graph.OutputPort('m9.data'),
'm19.options_data': T.Graph.OutputPort('m8.predictions'),
'm19.start_date': '',
'm19.end_date': '',
'm19.initialize': m19_initialize_bigquant_run,
'm19.handle_data': m19_handle_data_bigquant_run,
'm19.prepare': m19_prepare_bigquant_run,
'm19.volume_limit': 0.025,
'm19.order_price_field_buy': 'open',
'm19.order_price_field_sell': 'close',
'm19.capital_base': 1000000,
'm19.auto_cancel_non_tradable_orders': True,
'm19.data_frequency': 'daily',
'm19.price_type': '真实价格',
'm19.product_type': '股票',
'm19.plot_charts': True,
'm19.backtest_only': False,
'm19.benchmark': '000300.HIX',
})
# g.run({})
def m5_param_grid_builder_bigquant_run():
param_grid = {}
#'m1.start_date': '2005-01-01',
#'m1.end_date': '2010-01-01',
# year_list=['2020-01-01','2021-01-01']
# for i in range(10):
# year_list.append('201{}-01-01'.format(i))
# param_grid['m1.end_date']=year_list
year_last=['2018-08-01','2019-10-01',
'2020-02-01',
'2020-06-01',
'2020-10-01',
'2020-12-01']
# for i in range(12,-1):
# year_list.append('2020-{}-01'.format(i))
param_grid['m1.start_date']=year_last
return param_grid
def m5_scoring_bigquant_run(result):
score = result.get('m19').read_raw_perf()['sharpe'].tail(1)[0]
return {'score': score}
m5 = M.hyper_parameter_search.v1(
param_grid_builder=m5_param_grid_builder_bigquant_run,
scoring=m5_scoring_bigquant_run,
search_algorithm='网格搜索',
search_iterations=10,
workers=3,
worker_distributed_run=True,
worker_silent=False,
run_now=True,
bq_graph=g
)
[2022-03-08 16:38:52.944490] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-08 16:38:52.952627] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:52.954338] INFO: moduleinvoker: instruments.v2 运行完成[0.009862s].
[2022-03-08 16:38:52.964531] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-03-08 16:38:52.973415] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:52.976467] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.011941s].
[2022-03-08 16:38:52.983342] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-03-08 16:38:52.990691] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:52.993008] INFO: moduleinvoker: input_features.v1 运行完成[0.009694s].
[2022-03-08 16:38:52.998775] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-03-08 16:38:53.007263] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:53.009437] INFO: moduleinvoker: input_features.v1 运行完成[0.01066s].
[2022-03-08 16:38:53.039461] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-08 16:38:53.094965] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:53.098402] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.058953s].
[2022-03-08 16:38:53.108101] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-08 16:38:53.115924] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:53.117379] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.009283s].
[2022-03-08 16:38:53.127160] INFO: moduleinvoker: join.v3 开始运行..
[2022-03-08 16:38:53.135831] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:53.137458] INFO: moduleinvoker: join.v3 运行完成[0.010302s].
[2022-03-08 16:38:53.147442] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-08 16:38:53.165057] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:53.168590] INFO: moduleinvoker: dropnan.v1 运行完成[0.021148s].
[2022-03-08 16:38:53.181241] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2022-03-08 16:38:53.199917] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:53.330498] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[0.149265s].
[2022-03-08 16:38:53.335927] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-08 16:38:53.350410] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:53.351977] INFO: moduleinvoker: instruments.v2 运行完成[0.016053s].
[2022-03-08 16:38:53.365398] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-08 16:38:53.375140] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:53.377182] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.01182s].
[2022-03-08 16:38:53.392978] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-08 16:38:53.423710] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:53.425451] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.032485s].
[2022-03-08 16:38:53.435567] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-08 16:38:53.444454] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:53.446020] INFO: moduleinvoker: dropnan.v1 运行完成[0.010458s].
[2022-03-08 16:38:53.454187] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-03-08 16:38:53.470510] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:53.472988] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.018789s].
[2022-03-08 16:38:53.526660] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-03-08 16:38:53.552875] INFO: moduleinvoker: 命中缓存
[2022-03-08 16:38:57.579308] INFO: moduleinvoker: backtest.v8 运行完成[4.052627s].
[2022-03-08 16:38:57.581846] INFO: moduleinvoker: trade.v4 运行完成[4.093508s].
#data1=eval(m6.plot_test_data_ndcg('Series'))#[2]#["name"]#=="NDCG@1"
#print(tyabspe(data1))
data1=m6.plot_test_data_ndcg('Series')
#eval()
data1
def index_of_str(s1, s2):
res = []
index = 0
if s1 == "" or s2 == "":
return -1
split_list = s1.split(s2)
for i in range(len(split_list) - 1):
index += len(split_list[i])
res.append(index)
index += len(s2)
return res if res else -1
str1 =data1#"cdembccdefacddelhpzmrtcdeqpjcde"
str2 = "data"
print("字符串 {} 中出现的位置:{} ".format(str2, index_of_str(str1, str2)))
date_windows =['2005-01,2010-01','2005-01,2011-01','2005-01,2012-01','2005-01,2013-01','2005-01,2014-01','2005-01,2015-01','2005-01,2016-01','2005-01,2017-01','2005-01,2018-01','2005-01,2019-01','2005-01,2020-01','2005-01,2021-01',]
date_df_1 = pd.DataFrame( columns=['训练集数据时间','训练集NDCG_max','预测集收益率','预测集夏普',] )
ndg_max=[0.527,0.524,0.527,0.518,0.523,0.512,0.508,0.502,0.493,0.495,0.493,0.492]
shape=[1.724,1.499,0.993,1.857,0.825,0.60,3.278,0.453,1.348,2.440,2.381,2.154]
return_pre=[0.509,0.374,0.275,0.56,0.21,0.16,1.02,0.101,0.325,0.547,0.51,0.168]
date_df_1['训练集数据时间']=date_windows
date_df_1['训练集NDCG_max']=ndg_max
date_df_1['预测集收益率']=return_pre
date_df_1['预测集夏普']=shape
date_df_1
#date_df_1.to_csv('long_term_predit.csv')
import matplotlib.pyplot as plt
import numpy as np
df =pd.DataFrame(date_df_1, columns=['训练集数据时间','训练集NDCG_max','预测集收益率','预测集夏普'])
plt.plot(date_df_1['训练集数据时间'],date_df_1['训练集NDCG_max'],)
plt.plot(date_df_1['训练集数据时间'],date_df_1['预测集收益率'],)
plt.plot(date_df_1['训练集数据时间'],date_df_1['预测集夏普'],)
plt.figure(); df.plot(); plt.legend(loc='best')
date_windows1 =['2018-08-01,2021-01-01','2019-10-01,2021-01-01',
'2020-02-01,2021-01-01',
'2020-06-01,2021-01-01',
'2020-10-01,2021-01-01',
'2020-12-01,2021-01-01']
date_df_2 = pd.DataFrame( columns=['训练集数据时间','训练集NDCG_max','预测集收益率','预测集夏普',] )
#date_df.index.name = 'CompanyName'
ndg_max1=[0.496,0.486,0.491,0.534,0.550,0.383]
shape1=[1.618,0.802,1.613,2.496,0.146,0.903]
return_pre1=[0.39,0.19,0.32,0.678,0.031,0.35,]
date_df_2['训练集数据时间']=date_windows1
date_df_2['训练集NDCG_max']=ndg_max1
date_df_2['预测集收益率']=return_pre1
date_df_2['预测集夏普']=shape1
#date_df_2.to_csv('short_term_predit.csv')
date_df_2
import matplotlib.pyplot as plt
import numpy as np
df =pd.DataFrame(date_df_2, columns=['训练集数据时间','训练集NDCG_max','预测集收益率','预测集夏普'])
plt.plot(date_df_2['训练集数据时间'],date_df_2['训练集NDCG_max'],)
plt.plot(date_df_2['训练集数据时间'],date_df_2['预测集收益率'],)
plt.plot(date_df_2['训练集数据时间'],date_df_2['预测集夏普'],)
plt.figure(); df.plot(); plt.legend(loc='best')
# import matplotlib.pyplot as plt
# import numpy as np
# plt.figure(figsize=(36,12))
# for i in range(1,3):
# date_df_1
# #abnormalreturns_df = cal_abnormol(day1=day1,day2=x1,day_total_end=y1)
# plt.subplot(4,4,i)
# date_df_1[date_df_1.columns[i-1]].plot()
# plt.xlabel('Event Window{}'.format(date_windows[i-1]),fontsize=13, fontdict={"family": 'SimSun', "size": 15, "color": "r"})
# plt.ylabel('Return',fontsize=13, fontdict={"family": 'SimSun', "size": 15, "color": "r"})
# #plt.axhline(y=(np.sqrt((abnormalreturns_df.iloc[:,i-1].std()**2/21))*1.96),color='red',linestyle='--')
# #plt.axhline(y=(np.sqrt((abnormalreturns_df.iloc[:,i-1].std()**2/21))*-1.96),color='red',linestyle='--')
# plt.title(date_df_1.columns[i-1])