{"description":"实验创建于2022/3/23","graph":{"edges":[{"to_node_id":"-505:features_ds","from_node_id":"-501:data"},{"to_node_id":"-571:features","from_node_id":"-501:data"},{"to_node_id":"-528:features","from_node_id":"-505:data"},{"to_node_id":"-535:features","from_node_id":"-505:data"},{"to_node_id":"-792:features","from_node_id":"-505:data"},{"to_node_id":"-799:features","from_node_id":"-505:data"},{"to_node_id":"-554:data1","from_node_id":"-509:data"},{"to_node_id":"-509:instruments","from_node_id":"-519:data"},{"to_node_id":"-528:instruments","from_node_id":"-519:data"},{"to_node_id":"-535:input_data","from_node_id":"-528:data"},{"to_node_id":"-554:data2","from_node_id":"-535:data"},{"to_node_id":"-561:input_data","from_node_id":"-544:data"},{"to_node_id":"-544:input_data","from_node_id":"-554:data"},{"to_node_id":"-587:model","from_node_id":"-571:model"},{"to_node_id":"-250:options_data","from_node_id":"-587:predictions"},{"to_node_id":"-792:instruments","from_node_id":"-783:data"},{"to_node_id":"-250:instruments","from_node_id":"-783:data"},{"to_node_id":"-799:input_data","from_node_id":"-792:data"},{"to_node_id":"-3997:input_data","from_node_id":"-799:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"-561:data"},{"to_node_id":"-571:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"-571:test_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"-4002:input_data","from_node_id":"-3997:data"},{"to_node_id":"-587:data","from_node_id":"-4002:data"}],"nodes":[{"node_id":"-501","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nts_min(amount_0,20)/mean(amount_0,20)\n#20日内最低成交额/20日平均成交额\nrank_swing_volatility_5_0\n#5日的振幅波动率排名\nrank(mean(mf_net_amount_xl_0,5))/rank(mean(mf_net_amount_xl_0,20))\n#5日的平均超大单资金流入的排名/(20日的平均超大单资金流入的排名)\nrank(sum(high_0/close_0,20))/rank(sum(close_0/low_0,10))\n#最高价和最低价的关系\nmean(mf_net_amount_m_0,10)/mean(mf_net_amount_m_0,20)\n#10日内的资金流中单净值/20日内中单净值 排序\nrank(mean(amount_0/deal_number_0,5))/rank(mean(amount_0/deal_number_0,20))\n#成交额和成交笔数的关系\nrank(mean(mf_net_amount_s_0,5))/rank(mean(mf_net_amount_s_0,20))\n#5日内的资金流小单净值/20日内小单净值 排序\nrank(mean(mf_net_amount_m_0,5))/rank(mean(mf_net_amount_m_0,10))\n#5日内的资金流中单净值/10日内小单净值 排序\nrank(mean(mf_net_amount_l_0,5))/rank(mean(mf_net_amount_l_0,10))\n#5日内的资金流大单净值/10日内大单净值 排序\ncorrelation(sqrt(volume_0),return_0,5)\n#5日内收益率和成交量的平方的相关系数\ncorrelation(log(volume_0),abs(return_0-1),5)\n#5日内成交量的对数 和收益率的绝对值 的相关系数\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-501"}],"output_ports":[{"name":"data","node_id":"-501"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-505","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\ncond1=rank(((close_0-open_0)/open_0)/((close_0-open_4)/open_4))\n\ncond3=rank(((high_0-low_0)/close_1)/ts_max(((high_0-low_0)/close_1), 20))\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-505"}],"output_ports":[{"name":"data","node_id":"-505"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-509","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益,2日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n\nshift(close, -2) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\n\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用30个分类\n\nall_wbins(label, 30)\n\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-509"}],"output_ports":[{"name":"data","node_id":"-509"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-519","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2011-10-20","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-03-15","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-519"}],"output_ports":[{"name":"data","node_id":"-519"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-528","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-528"},{"name":"features","node_id":"-528"}],"output_ports":[{"name":"data","node_id":"-528"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-535","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-535"},{"name":"features","node_id":"-535"}],"output_ports":[{"name":"data","node_id":"-535"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-544","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-544"}],"output_ports":[{"name":"data","node_id":"-544"},{"name":"left_data","node_id":"-544"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-554","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-554"},{"name":"data2","node_id":"-554"}],"output_ports":[{"name":"data","node_id":"-554"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-571","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"280","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"21","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-571"},{"name":"features","node_id":"-571"},{"name":"test_ds","node_id":"-571"},{"name":"base_model","node_id":"-571"}],"output_ports":[{"name":"model","node_id":"-571"},{"name":"feature_gains","node_id":"-571"},{"name":"m_lazy_run","node_id":"-571"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-587","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"-587"},{"name":"data","node_id":"-587"}],"output_ports":[{"name":"predictions","node_id":"-587"},{"name":"m_lazy_run","node_id":"-587"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-783","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-03-16","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-03-23","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-783"}],"output_ports":[{"name":"data","node_id":"-783"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-792","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-792"},{"name":"features","node_id":"-792"}],"output_ports":[{"name":"data","node_id":"-792"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-799","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-799"},{"name":"features","node_id":"-799"}],"output_ports":[{"name":"data","node_id":"-799"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = [1]\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.options['hold_days'] = 1\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 获取当前持仓\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n \n today = data.current_dt.strftime('%Y-%m-%d')\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == today]\n# try:\n# #大盘风控模块,读取风控数据 \n# benckmark_risk=ranker_prediction['bm_0'].values[0]\n# if benckmark_risk > 0:\n# for instrument in positions.keys():\n# context.order_target(context.symbol(instrument), 0)\n# print(today,'大盘风控止损触发,全仓卖出')\n# return\n# except:\n# print('--!')\n \n #当risk为1时,市场有风险,全部平仓,不再执行其它操作 \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n #cash_for_buy = min(context.portfolio.portfolio_value/2,context.portfolio.cash)\n #cash_for_buy = context.portfolio.portfolio_value\n #print(ranker_prediction)\n #cash_for_buy = context.portfolio.portfolio_value\n # 手上有的资金全拿来买股票\n cash_for_buy = context.portfolio.cash\n # stockranker给出的股票排序\n buy_instruments = list(ranker_prediction.instrument)\n # 需要卖出的股票(持仓的股票)\n sell_instruments = [instrument.symbol for instrument in context.portfolio.positions.keys()]\n # 买入的股票不能是需要卖出的股票\n to_buy = set(buy_instruments[:1]) - set(sell_instruments) \n # 需要卖出的股票不包含需要买入的股票\n to_sell = set(sell_instruments) - set(buy_instruments[:1])\n \n \n for instrument in to_sell:\n context.order_target(context.symbol(instrument), 0)\n for instrument in to_buy:\n context.order_value(context.symbol(instrument), cash_for_buy)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"def bigquant_run(context):\n\n\n # 获取st状态和涨跌停状态\n \n context.status_df = D.features(instruments =context.instruments,start_date = context.start_date, end_date = context.end_date, \n fields=['st_status_0','price_limit_status_0','price_limit_status_1'])\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"def bigquant_run(context, data):\n pass \n# # 获取涨跌停状态数据\n# df_price_limit_status=context.status_df.set_index('date')\n# today=data.current_dt.strftime('%Y-%m-%d')\n# # 得到当前未完成订单\n# for orders in get_open_orders().values():\n# # 循环,撤销订单\n# for _order in orders:\n# ins=str(_order.sid.symbol)\n# try:\n# #判断一下如果当日涨停,则取消卖单\n# if df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status_0.loc[today]>2 and _order.amount<0:\n# cancel_order(_order)\n# print(today,'尾盘涨停取消卖单',ins) \n# except:\n# continue\n \n \n ","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-561","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"cond1<0.01 & cond3>0.85","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-561"}],"output_ports":[{"name":"data","node_id":"-561"},{"name":"left_data","node_id":"-561"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-3997","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"cond1<0.01 & cond3>0.85","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-3997"}],"output_ports":[{"name":"data","node_id":"-3997"},{"name":"left_data","node_id":"-3997"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-4002","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-4002"}],"output_ports":[{"name":"data","node_id":"-4002"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-501' Position='323,-66,200,200'/><node_position Node='-505' Position='342,29,200,200'/><node_position Node='-509' Position='-24,120,200,200'/><node_position Node='-519' Position='-20,5,200,200'/><node_position Node='-528' Position='272.6561584472656,156,200,200'/><node_position Node='-535' Position='272.51104736328125,250.3817138671875,200,200'/><node_position Node='-544' Position='136.6940460205078,423.70977783203125,200,200'/><node_position Node='-554' Position='124,360,200,200'/><node_position Node='-571' Position='157.64041137695312,648.7633666992188,200,200'/><node_position Node='-587' Position='434.80126953125,719.80126953125,200,200'/><node_position Node='-783' Position='685,-24,200,200'/><node_position Node='-792' Position='688.9463500976562,219.26808166503906,200,200'/><node_position Node='-799' Position='648.9085083007812,339.7791748046875,200,200'/><node_position Node='-250' Position='410.47320556640625,802.6561889648438,200,200'/><node_position Node='-561' Position='140.3502197265625,498.9464111328125,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='139.02212524414062,572.236572265625,200,200'/><node_position Node='-3997' Position='626.6719360351562,438.0536193847656,200,200'/><node_position Node='-4002' Position='604.4195556640625,531.5425415039062,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-03-24 11:13:36.006021] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-03-24 11:13:36.021322] INFO: moduleinvoker: 命中缓存
[2022-03-24 11:13:36.023195] INFO: moduleinvoker: input_features.v1 运行完成[0.017186s].
[2022-03-24 11:13:36.029247] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-03-24 11:13:36.037518] INFO: moduleinvoker: 命中缓存
[2022-03-24 11:13:36.039802] INFO: moduleinvoker: input_features.v1 运行完成[0.010556s].
[2022-03-24 11:13:36.046165] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-24 11:13:36.137261] INFO: moduleinvoker: instruments.v2 运行完成[0.091081s].
[2022-03-24 11:13:36.146808] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-03-24 11:13:41.608925] INFO: 自动标注(股票): 加载历史数据: 6607598 行
[2022-03-24 11:13:41.610576] INFO: 自动标注(股票): 开始标注 ..
[2022-03-24 11:13:46.642964] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[10.496142s].
[2022-03-24 11:13:46.658550] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-24 11:13:48.596931] INFO: 基础特征抽取: 年份 2011, 特征行数=239358
[2022-03-24 11:13:50.874280] INFO: 基础特征抽取: 年份 2012, 特征行数=565675
[2022-03-24 11:13:53.217457] INFO: 基础特征抽取: 年份 2013, 特征行数=564168
[2022-03-24 11:13:55.805752] INFO: 基础特征抽取: 年份 2014, 特征行数=569948
[2022-03-24 11:13:58.633897] INFO: 基础特征抽取: 年份 2015, 特征行数=569698
[2022-03-24 11:14:01.600814] INFO: 基础特征抽取: 年份 2016, 特征行数=641546
[2022-03-24 11:14:04.881847] INFO: 基础特征抽取: 年份 2017, 特征行数=743233
[2022-03-24 11:14:08.636743] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2022-03-24 11:14:12.963119] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2022-03-24 11:14:17.258675] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2022-03-24 11:14:20.523228] INFO: 基础特征抽取: 年份 2021, 特征行数=191103
[2022-03-24 11:14:20.645090] INFO: 基础特征抽取: 总行数: 6732544
[2022-03-24 11:14:20.651480] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[33.992973s].
[2022-03-24 11:14:20.662566] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-24 11:14:39.595238] INFO: derived_feature_extractor: 提取完成 cond1=rank(((close_0-open_0)/open_0)/((close_0-open_4)/open_4)), 4.802s
[2022-03-24 11:14:49.813371] INFO: derived_feature_extractor: 提取完成 cond3=rank(((high_0-low_0)/close_1)/ts_max(((high_0-low_0)/close_1), 20)), 10.217s
[2022-03-24 11:15:01.204690] INFO: derived_feature_extractor: 提取完成 ts_min(amount_0,20)/mean(amount_0,20), 11.390s
[2022-03-24 11:15:21.674178] INFO: derived_feature_extractor: 提取完成 rank(mean(mf_net_amount_xl_0,5))/rank(mean(mf_net_amount_xl_0,20)), 20.468s
[2022-03-24 11:15:42.581212] INFO: derived_feature_extractor: 提取完成 rank(sum(high_0/close_0,20))/rank(sum(close_0/low_0,10)), 20.905s
[2022-03-24 11:15:53.905023] INFO: derived_feature_extractor: 提取完成 mean(mf_net_amount_m_0,10)/mean(mf_net_amount_m_0,20), 11.322s
[2022-03-24 11:16:13.063165] INFO: derived_feature_extractor: 提取完成 rank(mean(amount_0/deal_number_0,5))/rank(mean(amount_0/deal_number_0,20)), 19.157s
[2022-03-24 11:16:33.751154] INFO: derived_feature_extractor: 提取完成 rank(mean(mf_net_amount_s_0,5))/rank(mean(mf_net_amount_s_0,20)), 20.686s
[2022-03-24 11:16:53.251609] INFO: derived_feature_extractor: 提取完成 rank(mean(mf_net_amount_m_0,5))/rank(mean(mf_net_amount_m_0,10)), 19.499s
[2022-03-24 11:17:14.175676] INFO: derived_feature_extractor: 提取完成 rank(mean(mf_net_amount_l_0,5))/rank(mean(mf_net_amount_l_0,10)), 20.923s
[2022-03-24 11:17:49.620293] INFO: derived_feature_extractor: 提取完成 correlation(sqrt(volume_0),return_0,5), 35.443s
[2022-03-24 11:18:23.486160] INFO: derived_feature_extractor: 提取完成 correlation(log(volume_0),abs(return_0-1),5), 33.864s
[2022-03-24 11:18:25.461935] INFO: derived_feature_extractor: /y_2011, 239358
[2022-03-24 11:18:26.727039] INFO: derived_feature_extractor: /y_2012, 565675
[2022-03-24 11:18:28.443307] INFO: derived_feature_extractor: /y_2013, 564168
[2022-03-24 11:18:30.134084] INFO: derived_feature_extractor: /y_2014, 569948
[2022-03-24 11:18:31.884824] INFO: derived_feature_extractor: /y_2015, 569698
[2022-03-24 11:18:33.981026] INFO: derived_feature_extractor: /y_2016, 641546
[2022-03-24 11:18:36.323685] INFO: derived_feature_extractor: /y_2017, 743233
[2022-03-24 11:18:38.912859] INFO: derived_feature_extractor: /y_2018, 816987
[2022-03-24 11:18:41.585982] INFO: derived_feature_extractor: /y_2019, 884867
[2022-03-24 11:18:44.637412] INFO: derived_feature_extractor: /y_2020, 945961
[2022-03-24 11:18:46.381302] INFO: derived_feature_extractor: /y_2021, 191103
[2022-03-24 11:18:46.818621] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[266.156034s].
[2022-03-24 11:18:46.830907] INFO: moduleinvoker: join.v3 开始运行..
[2022-03-24 11:19:00.995825] INFO: join: /y_2011, 行数=114418/239358, 耗时=3.395916s
[2022-03-24 11:19:05.690392] INFO: join: /y_2012, 行数=565669/565675, 耗时=4.691855s
[2022-03-24 11:19:10.961248] INFO: join: /y_2013, 行数=564160/564168, 耗时=5.264961s
[2022-03-24 11:19:15.755390] INFO: join: /y_2014, 行数=569942/569948, 耗时=4.787794s
[2022-03-24 11:19:22.051958] INFO: join: /y_2015, 行数=569688/569698, 耗时=6.289373s
[2022-03-24 11:19:27.616182] INFO: join: /y_2016, 行数=641542/641546, 耗时=5.558144s
[2022-03-24 11:19:33.756994] INFO: join: /y_2017, 行数=743225/743233, 耗时=6.134613s
[2022-03-24 11:19:40.679463] INFO: join: /y_2018, 行数=816971/816987, 耗时=6.912941s
[2022-03-24 11:19:47.399373] INFO: join: /y_2019, 行数=884838/884867, 耗时=6.713069s
[2022-03-24 11:19:53.793880] INFO: join: /y_2020, 行数=945905/945961, 耗时=6.386958s
[2022-03-24 11:19:57.414650] INFO: join: /y_2021, 行数=182700/191103, 耗时=3.612437s
[2022-03-24 11:19:57.535138] INFO: join: 最终行数: 6599058
[2022-03-24 11:19:57.588179] INFO: moduleinvoker: join.v3 运行完成[70.757262s].
[2022-03-24 11:19:57.606011] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2022-03-24 11:19:58.435007] INFO: A股股票过滤: 过滤 /y_2011, 642/0/114418
[2022-03-24 11:20:01.162211] INFO: A股股票过滤: 过滤 /y_2012, 2415/0/565669
[2022-03-24 11:20:03.732233] INFO: A股股票过滤: 过滤 /y_2013, 1644/0/564160
[2022-03-24 11:20:06.364377] INFO: A股股票过滤: 过滤 /y_2014, 985/0/569942
[2022-03-24 11:20:08.893176] INFO: A股股票过滤: 过滤 /y_2015, 297/0/569688
[2022-03-24 11:20:11.874464] INFO: A股股票过滤: 过滤 /y_2016, 28/0/641542
[2022-03-24 11:20:15.249724] INFO: A股股票过滤: 过滤 /y_2017, 27/0/743225
[2022-03-24 11:20:19.197680] INFO: A股股票过滤: 过滤 /y_2018, 112/0/816971
[2022-03-24 11:20:23.406638] INFO: A股股票过滤: 过滤 /y_2019, 265/0/884838
[2022-03-24 11:20:28.106975] INFO: A股股票过滤: 过滤 /y_2020, 239/0/945905
[2022-03-24 11:20:29.148457] INFO: A股股票过滤: 过滤 /y_2021, 66/0/182700
[2022-03-24 11:20:29.154736] INFO: A股股票过滤: 过滤完成, 6720 + 0
[2022-03-24 11:20:29.183416] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[31.577372s].
[2022-03-24 11:20:29.194458] INFO: moduleinvoker: filter.v3 开始运行..
[2022-03-24 11:20:29.211669] INFO: filter: 使用表达式 cond1<0.01 & cond3>0.85 过滤
[2022-03-24 11:20:29.408518] INFO: filter: 过滤 /y_2011, 2/0/642
[2022-03-24 11:20:29.504818] INFO: filter: 过滤 /y_2012, 10/0/2415
[2022-03-24 11:20:29.585106] INFO: filter: 过滤 /y_2013, 1/0/1644
[2022-03-24 11:20:29.672030] INFO: filter: 过滤 /y_2014, 2/0/985
[2022-03-24 11:20:29.706472] INFO: filter: 过滤 /y_2015, 0/0/297
[2022-03-24 11:20:29.742174] INFO: filter: 过滤 /y_2016, 0/0/28
[2022-03-24 11:20:29.793387] INFO: filter: 过滤 /y_2017, 0/0/27
[2022-03-24 11:20:29.877055] INFO: filter: 过滤 /y_2018, 1/0/112
[2022-03-24 11:20:29.944836] INFO: filter: 过滤 /y_2019, 1/0/265
[2022-03-24 11:20:29.984929] INFO: filter: 过滤 /y_2020, 0/0/239
[2022-03-24 11:20:30.068204] INFO: filter: 过滤 /y_2021, 1/0/66
[2022-03-24 11:20:30.101522] INFO: moduleinvoker: filter.v3 运行完成[0.907074s].
[2022-03-24 11:20:30.114407] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-24 11:20:30.224137] INFO: dropnan: /y_2011, 2/2
[2022-03-24 11:20:30.281316] INFO: dropnan: /y_2012, 8/10
[2022-03-24 11:20:30.333006] INFO: dropnan: /y_2013, 1/1
[2022-03-24 11:20:30.387629] INFO: dropnan: /y_2014, 2/2
[2022-03-24 11:20:30.471441] INFO: dropnan: /y_2018, 1/1
[2022-03-24 11:20:30.522627] INFO: dropnan: /y_2019, 1/1
[2022-03-24 11:20:30.551763] INFO: dropnan: /y_2021, 0/1
[2022-03-24 11:20:30.597840] INFO: dropnan: 行数: 15/18
[2022-03-24 11:20:30.603063] INFO: moduleinvoker: dropnan.v1 运行完成[0.488638s].
[2022-03-24 11:20:30.611642] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-03-24 11:20:31.176220] INFO: StockRanker: 特征预处理 ..
[2022-03-24 11:20:31.234579] INFO: StockRanker: prepare data: training ..
[2022-03-24 11:20:31.275056] INFO: StockRanker: sort ..
[2022-03-24 11:20:31.327388] INFO: StockRanker: prepare data: test ..
[2022-03-24 11:20:31.365880] INFO: StockRanker: sort ..
[2022-03-24 11:20:31.419992] INFO: StockRanker训练: 5bef2462 准备训练: 15 行数, test: 15 rows
[2022-03-24 11:20:31.421470] INFO: StockRanker训练: AI模型训练,将在15*11=0.02万数据上对模型训练进行21轮迭代训练。预计将需要1~2分钟。请耐心等待。
[2022-03-24 11:20:31.615060] INFO: StockRanker训练: 正在训练 ..
[2022-03-24 11:20:31.665524] INFO: StockRanker训练: 任务状态: Pending
[2022-03-24 11:20:41.706884] INFO: StockRanker训练: 任务状态: Running
[2022-03-24 11:21:41.990623] INFO: StockRanker训练: 任务状态: Succeeded
[2022-03-24 11:21:42.002741] ERROR: moduleinvoker: module name: stock_ranker_train, module version: v6, trackeback: Exception: 模型训练失败:可能导致错误的原因是训练数据问题,请检查训练数据, err_code=1 (5bef2462ab2111ec80d3c6e6238ccd28)
---------------------------------------------------------------------------
Exception Traceback (most recent call last)
<ipython-input-3-9abed9487e05> in <module>
218 )
219
--> 220 m10 = M.stock_ranker_train.v6(
221 training_ds=m16.data,
222 features=m1.data,
Exception: 模型训练失败:可能导致错误的原因是训练数据问题,请检查训练数据, err_code=1 (5bef2462ab2111ec80d3c6e6238ccd28)