{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-215:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-215:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-222:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-231:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-238:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-209:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-223:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-250:options_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"DestinationInputPortId":"-231:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-250:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-222:input_data","SourceOutputPortId":"-215:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-222:data"},{"DestinationInputPortId":"-238:input_data","SourceOutputPortId":"-231:data"},{"DestinationInputPortId":"-227:input_data","SourceOutputPortId":"-238:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","SourceOutputPortId":"-209:model"},{"DestinationInputPortId":"-209:training_ds","SourceOutputPortId":"-223:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","SourceOutputPortId":"-227:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"-215","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-215"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-215"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-215","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-222","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-222"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-222"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-222","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-231","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-231"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-231"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-231","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-238","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-250","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0018, sell_cost=0.0018, min_cost=5))\n\n # 设置持仓数量\n context.stock_count = 10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')].reset_index(drop=True)\n\n is_staging = context.trading_day_index < 1 # 是否在建仓期间(前 hold_days 天)\n cash_for_buy = context.portfolio.cash # 获取账户现金\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n\n if not is_staging > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n stock_buy_num = context.stock_count - len(equities)\n for instrument in equities:\n try:\n new_rank = ranker_prediction[ranker_prediction.instrument==instrument].index.tolist()[0]\n except:\n new_rank = 50\n if data.can_trade(context.symbol(instrument)) and new_rank>40:\n context.order_target(context.symbol(instrument), 0)\n stock_buy_num += 1\n cash_for_buy += positions[instrument]*0.9998 # 卖出一个股票就资金手动回笼(模拟手续费费率扣除处理万分之2)\n \n else:\n stock_buy_num = context.stock_count\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n \n buy_instruments = list(ranker_prediction.instrument)\n stock_to_buy = [s for s in buy_instruments if s not in positions][:stock_buy_num]\n buy_cash_weights = T.norm([1.0 / math.log(i + 2) for i in range(stock_buy_num)])\n for i, instrument in enumerate(stock_to_buy):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-250"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-250","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-209","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-209"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-209"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-209"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-209"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-209","OutputType":null},{"Name":"feature_gains","NodeId":"-209","OutputType":null},{"Name":"m_lazy_run","NodeId":"-209","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-223","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-223"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-223"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-223","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-227","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-227"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-227"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-227","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><NodePosition Node='-215' Position='381,188,200,200'/><NodePosition Node='-222' Position='385,280,200,200'/><NodePosition Node='-231' Position='1078,236,200,200'/><NodePosition Node='-238' Position='1081,327,200,200'/><NodePosition Node='-250' Position='1037,751,200,200'/><NodePosition Node='-209' Position='638,561,200,200'/><NodePosition Node='-223' Position='376,467,200,200'/><NodePosition Node='-227' Position='1078,418,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":false}
[2020-10-15 11:36:26.690258] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-10-15 11:36:26.696179] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:26.697904] INFO: moduleinvoker: instruments.v2 运行完成[0.007618s].
[2020-10-15 11:36:26.700074] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2020-10-15 11:36:26.705777] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:26.707356] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.007258s].
[2020-10-15 11:36:26.709767] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-10-15 11:36:26.715040] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:26.716806] INFO: moduleinvoker: input_features.v1 运行完成[0.007019s].
[2020-10-15 11:36:26.724545] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-10-15 11:36:26.732011] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:26.733987] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.009438s].
[2020-10-15 11:36:26.738926] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-10-15 11:36:26.744639] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:26.746326] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.007392s].
[2020-10-15 11:36:26.749328] INFO: moduleinvoker: join.v3 开始运行..
[2020-10-15 11:36:26.754703] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:26.756303] INFO: moduleinvoker: join.v3 运行完成[0.006971s].
[2020-10-15 11:36:26.761163] INFO: moduleinvoker: dropnan.v2 开始运行..
[2020-10-15 11:36:26.767947] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:26.769449] INFO: moduleinvoker: dropnan.v2 运行完成[0.008296s].
[2020-10-15 11:36:26.771113] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2020-10-15 11:36:26.784301] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:26.948304] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.177159s].
[2020-10-15 11:36:26.955348] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-10-15 11:36:26.961754] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:26.963229] INFO: moduleinvoker: instruments.v2 运行完成[0.007874s].
[2020-10-15 11:36:26.969220] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-10-15 11:36:26.975216] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:26.976364] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.007141s].
[2020-10-15 11:36:26.978251] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-10-15 11:36:26.982300] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:26.983376] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.005116s].
[2020-10-15 11:36:26.985152] INFO: moduleinvoker: dropnan.v2 开始运行..
[2020-10-15 11:36:26.989412] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:26.990547] INFO: moduleinvoker: dropnan.v2 运行完成[0.005382s].
[2020-10-15 11:36:26.992242] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2020-10-15 11:36:26.998214] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:26.999724] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.007455s].
[2020-10-15 11:36:27.050054] INFO: moduleinvoker: backtest.v8 开始运行..
[2020-10-15 11:36:27.055549] INFO: backtest: biglearning backtest:V8.4.2
[2020-10-15 11:36:27.056820] INFO: backtest: product_type:stock by specified
[2020-10-15 11:36:27.209839] INFO: moduleinvoker: cached.v2 开始运行..
[2020-10-15 11:36:27.215640] INFO: moduleinvoker: 命中缓存
[2020-10-15 11:36:27.217079] INFO: moduleinvoker: cached.v2 运行完成[0.007236s].
[2020-10-15 11:36:28.656991] INFO: algo: TradingAlgorithm V1.6.9
[2020-10-15 11:36:30.421872] INFO: algo: trading transform...
[2020-10-15 11:36:35.247210] INFO: algo: handle_splits get splits [dt:2015-05-15 00:00:00+00:00] [asset:Equity(790 [000736.SZA]), ratio:0.9987077116966248]
[2020-10-15 11:36:35.469039] INFO: algo: handle_splits get splits [dt:2015-05-22 00:00:00+00:00] [asset:Equity(1502 [300119.SZA]), ratio:0.9944382905960083]
[2020-10-15 11:36:35.470196] INFO: Position: position stock handle split[sid:1502, orig_amount:10500, new_amount:10558.0, orig_cost:16.360002202950817, new_cost:16.269, ratio:0.9944382905960083, last_sale_price:17.880001068115234]
[2020-10-15 11:36:35.471185] INFO: Position: after split: PositionStock(asset:Equity(1502 [300119.SZA]), amount:10558.0, cost_basis:16.269, last_sale_price:17.98000144958496)
[2020-10-15 11:36:35.472050] INFO: Position: returning cash: 12.9551
[2020-10-15 11:36:35.669082] INFO: algo: handle_splits get splits [dt:2015-05-29 00:00:00+00:00] [asset:Equity(3310 [002032.SZA]), ratio:0.9852486848831177]
[2020-10-15 11:36:36.393357] INFO: algo: handle_splits get splits [dt:2015-06-23 00:00:00+00:00] [asset:Equity(2847 [300077.SZA]), ratio:0.9998031258583069]
[2020-10-15 11:36:36.394606] INFO: Position: position stock handle split[sid:2847, orig_amount:5000, new_amount:5000.0, orig_cost:51.989998498178444, new_cost:51.9798, ratio:0.9998031258583069, last_sale_price:50.77000045776367]
[2020-10-15 11:36:36.395842] INFO: Position: after split: PositionStock(asset:Equity(2847 [300077.SZA]), amount:5000.0, cost_basis:51.9798, last_sale_price:50.779998779296875)
[2020-10-15 11:36:36.397480] INFO: Position: returning cash: 49.9863
[2020-10-15 11:36:36.941793] INFO: algo: handle_splits get splits [dt:2015-07-08 00:00:00+00:00] [asset:Equity(2595 [002133.SZA]), ratio:0.9865546822547913]
[2020-10-15 11:36:45.594046] INFO: algo: handle_splits get splits [dt:2016-05-06 00:00:00+00:00] [asset:Equity(1031 [600654.SHA]), ratio:0.9957947731018066]
[2020-10-15 11:36:45.595579] INFO: Position: position stock handle split[sid:1031, orig_amount:9400, new_amount:9439.0, orig_cost:22.90000022834161, new_cost:22.8037, ratio:0.9957947731018066, last_sale_price:23.68000030517578]
[2020-10-15 11:36:45.598312] INFO: Position: after split: PositionStock(asset:Equity(1031 [600654.SHA]), amount:9439.0, cost_basis:22.8037, last_sale_price:23.780000686645508)
[2020-10-15 11:36:45.600389] INFO: Position: returning cash: 16.4828
[2020-10-15 11:36:45.807161] INFO: algo: handle_splits get splits [dt:2016-05-16 00:00:00+00:00] [asset:Equity(1965 [300081.SZA]), ratio:0.3987395465373993]
[2020-10-15 11:36:45.809140] INFO: Position: position stock handle split[sid:1965, orig_amount:5100, new_amount:12790.0, orig_cost:35.13000244458773, new_cost:14.0077, ratio:0.3987395465373993, last_sale_price:13.919997215270996]
[2020-10-15 11:36:45.811841] INFO: Position: after split: PositionStock(asset:Equity(1965 [300081.SZA]), amount:12790.0, cost_basis:14.0077, last_sale_price:34.90999984741211)
[2020-10-15 11:36:45.813246] INFO: Position: returning cash: 4.2311
[2020-10-15 11:36:46.681029] INFO: algo: handle_splits get splits [dt:2016-06-20 00:00:00+00:00] [asset:Equity(2110 [600873.SHA]), ratio:0.9842022061347961]
[2020-10-15 11:36:46.682166] INFO: Position: position stock handle split[sid:2110, orig_amount:17800, new_amount:18085.0, orig_cost:6.130000174519228, new_cost:6.0332, ratio:0.9842022061347961, last_sale_price:6.230000019073486]
[2020-10-15 11:36:46.683194] INFO: Position: after split: PositionStock(asset:Equity(2110 [600873.SHA]), amount:18085.0, cost_basis:6.0332, last_sale_price:6.329999923706055)
[2020-10-15 11:36:46.684016] INFO: Position: returning cash: 4.4506
[2020-10-15 11:36:47.186251] INFO: algo: handle_splits get splits [dt:2016-07-08 00:00:00+00:00] [asset:Equity(1836 [603699.SHA]), ratio:0.9860337376594543]
[2020-10-15 11:36:47.187375] INFO: Position: position stock handle split[sid:1836, orig_amount:6400, new_amount:6490.0, orig_cost:18.010012230970926, new_cost:17.7585, ratio:0.9860337376594543, last_sale_price:17.65000343322754]
[2020-10-15 11:36:47.188331] INFO: Position: after split: PositionStock(asset:Equity(1836 [603699.SHA]), amount:6490.0, cost_basis:17.7585, last_sale_price:17.899999618530273)
[2020-10-15 11:36:47.189219] INFO: Position: returning cash: 11.4747
[2020-10-15 11:36:48.065792] INFO: algo: handle_splits get splits [dt:2016-08-12 00:00:00+00:00] [asset:Equity(2382 [600578.SHA]), ratio:0.9562363624572754]
[2020-10-15 11:36:48.067044] INFO: Position: position stock handle split[sid:2382, orig_amount:27000, new_amount:28235.0, orig_cost:4.560001943103561, new_cost:4.3604, ratio:0.9562363624572754, last_sale_price:4.37000036239624]
[2020-10-15 11:36:48.068138] INFO: Position: after split: PositionStock(asset:Equity(2382 [600578.SHA]), amount:28235.0, cost_basis:4.3604, last_sale_price:4.570000171661377)
[2020-10-15 11:36:48.068998] INFO: Position: returning cash: 3.045
[2020-10-15 11:36:51.988188] INFO: Performance: Simulated 488 trading days out of 488.
[2020-10-15 11:36:51.989521] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2020-10-15 11:36:51.990670] INFO: Performance: last close: 2016-12-30 15:00:00+00:00
[2020-10-15 11:37:00.131541] INFO: moduleinvoker: backtest.v8 运行完成[33.081478s].
[2020-10-15 11:37:00.133143] INFO: moduleinvoker: trade.v4 运行完成[33.128797s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-705a183c653c4f4cb8056745d946d554"}/bigcharts-data-end
- 收益率95.94%
- 年化收益率41.53%
- 基准收益率-6.33%
- 阿尔法0.44
- 贝塔1.05
- 夏普比率0.93
- 胜率0.6
- 盈亏比0.85
- 收益波动率45.74%
- 信息比率0.09
- 最大回撤61.14%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-a1a3d2d0f16c4ce4a74121fc69cd2647"}/bigcharts-data-end