{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-83:instruments","from_node_id":"-53:data"},{"to_node_id":"-34:instruments","from_node_id":"-53:data"},{"to_node_id":"-72:instruments","from_node_id":"-75:data"},{"to_node_id":"-198:instruments","from_node_id":"-75:data"},{"to_node_id":"-50:data1","from_node_id":"-83:data"},{"to_node_id":"-34:features","from_node_id":"-29:data"},{"to_node_id":"-41:features","from_node_id":"-29:data"},{"to_node_id":"-72:features","from_node_id":"-29:data"},{"to_node_id":"-79:features","from_node_id":"-29:data"},{"to_node_id":"-111:features","from_node_id":"-29:data"},{"to_node_id":"-41:input_data","from_node_id":"-34:data"},{"to_node_id":"-50:data2","from_node_id":"-41:data"},{"to_node_id":"-57:input_data","from_node_id":"-50:data"},{"to_node_id":"-111:training_ds","from_node_id":"-57:data"},{"to_node_id":"-127:data","from_node_id":"-61:data"},{"to_node_id":"-79:input_data","from_node_id":"-72:data"},{"to_node_id":"-61:input_data","from_node_id":"-79:data"},{"to_node_id":"-127:model","from_node_id":"-111:model"},{"to_node_id":"-198:options_data","from_node_id":"-127:predictions"}],"nodes":[{"node_id":"-53","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"000001.SZA\n000002.SZA\t\n000063.SZA\t\n000069.SZA\t\n000100.SZA\n000157.SZA\t\n000166.SZA\t\n000301.SZA\t\n000333.SZA\t\n000338.SZA\n000408.SZA\t\n000425.SZA\t\n000538.SZA\t\n000568.SZA\t\n000596.SZA\n000617.SZA\t\n000625.SZA\t\n000661.SZA\t\n000708.SZA\n000725.SZA\t\n000733.SZA\t\n000768.SZA\t\n000776.SZA\t\n000786.SZA\n","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-53"}],"output_ports":[{"name":"data","node_id":"-53"}],"cacheable":true,"seq_num":3,"comment":"(训练集)","comment_collapsed":false},{"node_id":"-75","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2023-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"000001.SZA\n000002.SZA\t\n000063.SZA\t\n000069.SZA\t\n000100.SZA\n000157.SZA\t\n000166.SZA\t\n000301.SZA\t\n000333.SZA\t\n000338.SZA\n000408.SZA\t\n000425.SZA\t\n000538.SZA\t\n000568.SZA\t\n000596.SZA\n000617.SZA\t\n000625.SZA\t\n000661.SZA\t\n000708.SZA\n000725.SZA\t\n000733.SZA\t\n000768.SZA\t\n000776.SZA\t\n000786.SZA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-75"}],"output_ports":[{"name":"data","node_id":"-75"}],"cacheable":true,"seq_num":1,"comment":"测试集","comment_collapsed":false},{"node_id":"-83","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-83"}],"output_ports":[{"name":"data","node_id":"-83"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-29","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-29"}],"output_ports":[{"name":"data","node_id":"-29"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-34","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"30","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-34"},{"name":"features","node_id":"-34"}],"output_ports":[{"name":"data","node_id":"-34"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-41","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-41"},{"name":"features","node_id":"-41"}],"output_ports":[{"name":"data","node_id":"-41"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-50","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-50"},{"name":"data2","node_id":"-50"}],"output_ports":[{"name":"data","node_id":"-50"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-57","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-57"},{"name":"features","node_id":"-57"}],"output_ports":[{"name":"data","node_id":"-57"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-61","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-61"},{"name":"features","node_id":"-61"}],"output_ports":[{"name":"data","node_id":"-61"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-72","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"30","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-72"},{"name":"features","node_id":"-72"}],"output_ports":[{"name":"data","node_id":"-72"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-79","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-79"},{"name":"features","node_id":"-79"}],"output_ports":[{"name":"data","node_id":"-79"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-111","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-111"},{"name":"features","node_id":"-111"},{"name":"test_ds","node_id":"-111"},{"name":"base_model","node_id":"-111"}],"output_ports":[{"name":"model","node_id":"-111"},{"name":"feature_gains","node_id":"-111"},{"name":"m_lazy_run","node_id":"-111"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-127","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"-127"},{"name":"data","node_id":"-127"}],"output_ports":[{"name":"predictions","node_id":"-127"},{"name":"m_lazy_run","node_id":"-127"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-198","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-198"},{"name":"options_data","node_id":"-198"},{"name":"history_ds","node_id":"-198"},{"name":"benchmark_ds","node_id":"-198"},{"name":"trading_calendar","node_id":"-198"}],"output_ports":[{"name":"raw_perf","node_id":"-198"}],"cacheable":false,"seq_num":17,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-53' Position='-960,-13,200,200'/><node_position Node='-75' Position='-135.10999870300293,-128.88999938964844,200,200'/><node_position Node='-83' Position='-1093,178,200,200'/><node_position Node='-29' Position='-561,-108,200,200'/><node_position Node='-34' Position='-767,181,200,200'/><node_position Node='-41' Position='-753,297,200,200'/><node_position Node='-50' Position='-1026,423,200,200'/><node_position Node='-57' Position='-980,550,200,200'/><node_position Node='-61' Position='-187,309,200,200'/><node_position Node='-72' Position='-184,65,200,200'/><node_position Node='-79' Position='-184,188,200,200'/><node_position Node='-111' Position='-624,664,200,200'/><node_position Node='-127' Position='-340,764,200,200'/><node_position Node='-198' Position='-60,897,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2024-04-06 23:39:36.990244] INFO: moduleinvoker: instruments.v2 开始运行..
[2024-04-06 23:39:37.050232] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:37.053629] INFO: moduleinvoker: instruments.v2 运行完成[0.063391s].
[2024-04-06 23:39:37.071239] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2024-04-06 23:39:37.158183] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:37.161495] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.090255s].
[2024-04-06 23:39:37.176440] INFO: moduleinvoker: instruments.v2 开始运行..
[2024-04-06 23:39:37.247189] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:37.250366] INFO: moduleinvoker: instruments.v2 运行完成[0.073925s].
[2024-04-06 23:39:37.263474] INFO: moduleinvoker: input_features.v1 开始运行..
[2024-04-06 23:39:37.274901] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:37.277735] INFO: moduleinvoker: input_features.v1 运行完成[0.014264s].
[2024-04-06 23:39:37.348722] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2024-04-06 23:39:37.356459] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:37.359339] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.010637s].
[2024-04-06 23:39:37.376099] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2024-04-06 23:39:37.456058] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:37.459352] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.083254s].
[2024-04-06 23:39:37.477658] INFO: moduleinvoker: join.v3 开始运行..
[2024-04-06 23:39:37.548679] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:37.551998] INFO: moduleinvoker: join.v3 运行完成[0.074336s].
[2024-04-06 23:39:37.569787] INFO: moduleinvoker: dropnan.v2 开始运行..
[2024-04-06 23:39:37.647985] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:37.651244] INFO: moduleinvoker: dropnan.v2 运行完成[0.081455s].
[2024-04-06 23:39:37.673512] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2024-04-06 23:39:37.742017] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:37.745335] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.071824s].
[2024-04-06 23:39:37.762099] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2024-04-06 23:39:37.768963] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:37.771403] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.009303s].
[2024-04-06 23:39:37.787560] INFO: moduleinvoker: dropnan.v2 开始运行..
[2024-04-06 23:39:37.848015] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:37.850968] INFO: moduleinvoker: dropnan.v2 运行完成[0.063407s].
[2024-04-06 23:39:37.867248] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2024-04-06 23:39:37.964036] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:38.194570] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.327308s].
[2024-04-06 23:39:38.212115] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2024-04-06 23:39:38.248516] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:38.251188] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.039073s].
[2024-04-06 23:39:38.389972] INFO: moduleinvoker: backtest.v8 开始运行..
[2024-04-06 23:39:38.448946] INFO: moduleinvoker: 命中缓存
[2024-04-06 23:39:46.529493] INFO: moduleinvoker: backtest.v8 运行完成[8.13952s].
[2024-04-06 23:39:46.532032] INFO: moduleinvoker: trade.v4 运行完成[8.267237s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-ee9b642aac0c4390b753ca2057d7e9f3"}/bigcharts-data-end
- 收益率20.82%
- 年化收益率5.04%
- 基准收益率-16.24%
- 阿尔法0.09
- 贝塔0.82
- 夏普比率0.2
- 胜率0.49
- 盈亏比1.16
- 收益波动率20.38%
- 信息比率0.05
- 最大回撤28.62%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-4bb9a6ec200347f89303e2552e90b57e"}/bigcharts-data-end