{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-14684:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-14684:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"-14684:model"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000500.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n\n\nhf_value_diff_large_order\nhf_close_net_inflow_volume_rate\nhf_close_net_inflow_value_rate\nhf_volume_diff_large_order\nhf_close_netinflow_rate_med_order_act\nhf_close_sell_volume_med_order\nhf_close_volume_ask\nhf_close_netinflow_rate_small_order_act\nhf_close_sell_volume_small_order\nhf_close_buy_volume_small_order_act\nhf_close_buy_volume_med_order_act\nhf_close_sell_volume_large_order","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-11-28","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-14684","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"40","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"25","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":"0.2","type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-14684"},{"name":"features","node_id":"-14684"},{"name":"test_ds","node_id":"-14684"},{"name":"base_model","node_id":"-14684"}],"output_ports":[{"name":"model","node_id":"-14684"},{"name":"feature_gains","node_id":"-14684"},{"name":"m_lazy_run","node_id":"-14684"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"vwap_1","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"vwap_10","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='202,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='43,134,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='698,-35,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='240,315,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='493,662,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1037,68,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='246,465,200,200'/><node_position Node='-86' Position='1038,427,200,200'/><node_position Node='-215' Position='352,128,200,200'/><node_position Node='-222' Position='360,200,200,200'/><node_position Node='-231' Position='1058,194,200,200'/><node_position Node='-238' Position='1059,266,200,200'/><node_position Node='-14684' Position='459,548,200,200'/><node_position Node='-250' Position='488,729.4310913085938,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2023-04-29 16:53:00.520645] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-04-29 16:53:00.535880] INFO: moduleinvoker: 命中缓存
[2023-04-29 16:53:00.538493] INFO: moduleinvoker: instruments.v2 运行完成[0.017862s].
[2023-04-29 16:53:00.549188] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2023-04-29 16:53:00.557056] INFO: moduleinvoker: 命中缓存
[2023-04-29 16:53:01.451861] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.902657s].
[2023-04-29 16:53:01.458482] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-04-29 16:53:01.468446] INFO: moduleinvoker: 命中缓存
[2023-04-29 16:53:01.470625] INFO: moduleinvoker: input_features.v1 运行完成[0.012146s].
[2023-04-29 16:53:01.501864] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-04-29 16:53:01.511505] INFO: moduleinvoker: 命中缓存
[2023-04-29 16:53:01.513513] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.01168s].
[2023-04-29 16:53:01.522718] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-04-29 16:53:01.530918] INFO: moduleinvoker: 命中缓存
[2023-04-29 16:53:01.532875] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010159s].
[2023-04-29 16:53:01.554106] INFO: moduleinvoker: join.v3 开始运行..
[2023-04-29 16:53:01.561458] INFO: moduleinvoker: 命中缓存
[2023-04-29 16:53:01.563138] INFO: moduleinvoker: join.v3 运行完成[0.009039s].
[2023-04-29 16:53:01.572756] INFO: moduleinvoker: dropnan.v1 开始运行..
[2023-04-29 16:53:01.587991] INFO: moduleinvoker: 命中缓存
[2023-04-29 16:53:01.590022] INFO: moduleinvoker: dropnan.v1 运行完成[0.017265s].
[2023-04-29 16:53:01.601830] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2023-04-29 16:53:01.614217] INFO: moduleinvoker: 命中缓存
[2023-04-29 16:53:02.174197] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.572356s].
[2023-04-29 16:53:02.180640] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-04-29 16:53:02.259507] INFO: moduleinvoker: instruments.v2 运行完成[0.078859s].
[2023-04-29 16:53:02.272933] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-04-29 16:53:05.083240] INFO: 基础特征抽取: 年份 2020, 特征行数=243745
[2023-04-29 16:53:13.592598] INFO: 基础特征抽取: 年份 2021, 特征行数=1058862
[2023-04-29 16:53:22.313604] INFO: 基础特征抽取: 年份 2022, 特征行数=1029063
[2023-04-29 16:53:22.436874] INFO: 基础特征抽取: 总行数: 2331670
[2023-04-29 16:53:22.447892] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[20.174974s].
[2023-04-29 16:53:22.458966] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-04-29 16:53:28.729879] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.011s
[2023-04-29 16:53:28.740154] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.008s
[2023-04-29 16:53:28.747873] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.005s
[2023-04-29 16:53:28.754684] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.005s
[2023-04-29 16:53:28.761672] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.005s
[2023-04-29 16:53:28.768760] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.005s
[2023-04-29 16:53:30.386145] INFO: derived_feature_extractor: /y_2020, 243745
[2023-04-29 16:53:33.275213] INFO: derived_feature_extractor: /y_2021, 1058862
[2023-04-29 16:53:37.274712] INFO: derived_feature_extractor: /y_2022, 1029063
[2023-04-29 16:53:38.855544] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[16.396585s].
[2023-04-29 16:53:38.865942] INFO: moduleinvoker: dropnan.v1 开始运行..
[2023-04-29 16:53:40.654564] INFO: dropnan: /y_2020, 136305/243745
[2023-04-29 16:53:44.460807] INFO: dropnan: /y_2021, 865852/1058862
[2023-04-29 16:53:48.254510] INFO: dropnan: /y_2022, 1020622/1029063
[2023-04-29 16:53:48.395622] INFO: dropnan: 行数: 2022779/2331670
[2023-04-29 16:53:48.409199] INFO: moduleinvoker: dropnan.v1 运行完成[9.543256s].
[2023-04-29 16:53:48.425452] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2023-04-29 16:53:49.900746] INFO: StockRanker预测: /y_2020 ..
[2023-04-29 16:53:52.581730] INFO: StockRanker预测: /y_2021 ..
[2023-04-29 16:53:57.309411] INFO: StockRanker预测: /y_2022 ..
[2023-04-29 16:54:03.171779] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[14.74633s].
[2023-04-29 16:54:07.092108] INFO: moduleinvoker: backtest.v8 开始运行..
[2023-04-29 16:54:07.099508] INFO: backtest: biglearning backtest:V8.6.3
[2023-04-29 16:54:07.101570] INFO: backtest: product_type:stock by specified
[2023-04-29 16:54:07.186183] INFO: moduleinvoker: cached.v2 开始运行..
[2023-04-29 16:54:26.160991] INFO: backtest: 读取股票行情完成:3367732
[2023-04-29 16:54:29.946489] INFO: moduleinvoker: cached.v2 运行完成[22.760326s].
[2023-04-29 16:54:56.933243] INFO: backtest: algo history_data=DataSource(9f779bbbd05a4ddd984511148649b484T)
[2023-04-29 16:54:56.935746] INFO: algo: TradingAlgorithm V1.8.9
[2023-04-29 16:55:02.838094] INFO: algo: trading transform...
[2023-04-29 16:55:18.067192] WARNING: Performance: maybe_close_position no price for asset:Equity(4589 [300325.SZA]), field:price, dt:2022-06-28 15:00:00+00:00
[2023-04-29 16:55:22.062255] INFO: Performance: Simulated 461 trading days out of 461.
[2023-04-29 16:55:22.064118] INFO: Performance: first open: 2021-01-04 09:30:00+00:00
[2023-04-29 16:55:22.065826] INFO: Performance: last close: 2022-11-28 15:00:00+00:00
[2023-04-29 16:55:28.241710] INFO: moduleinvoker: backtest.v8 运行完成[81.149595s].
[2023-04-29 16:55:28.243507] INFO: moduleinvoker: trade.v4 运行完成[85.061606s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-0959abde8f2644e8af00f639181ca262"}/bigcharts-data-end
- 收益率36.34%
- 年化收益率18.46%
- 基准收益率-28.36%
- 阿尔法0.34
- 贝塔0.62
- 夏普比率0.67
- 胜率0.49
- 盈亏比1.17
- 收益波动率26.07%
- 信息比率0.1
- 最大回撤37.4%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-77b220af98374749862da01c9e5b5787"}/bigcharts-data-end