{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-238:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-238:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-245:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-254:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-261:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-7869:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-254:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-312:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-7869:training_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"DestinationInputPortId":"-7869:predict_ds","SourceOutputPortId":"-86:data"},{"DestinationInputPortId":"-245:input_data","SourceOutputPortId":"-238:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-245:data"},{"DestinationInputPortId":"-261:input_data","SourceOutputPortId":"-254:data"},{"DestinationInputPortId":"-86:input_data","SourceOutputPortId":"-261:data"},{"DestinationInputPortId":"-312:options_data","SourceOutputPortId":"-7869:predictions"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2014-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2016-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-86","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-86"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-86","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-238","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-245","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-245"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-245"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-245","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-254","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-254"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-254"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-254","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-261","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-261"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-261"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-261","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-312","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-312"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-312"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-312"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-312"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-312"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-312","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-7869","ModuleId":"BigQuantSpace.gradient_boosting_regressor.gradient_boosting_regressor-v1","ModuleParameters":[{"Name":"loss","Value":"ls","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"iterations","Value":10,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"subsample","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"min_samples_per_leaf","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_depth","Value":3,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"key_cols","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"other_train_parameters","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-7869"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-7869"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"-7869"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"predict_ds","NodeId":"-7869"}],"OutputPortsInternal":[{"Name":"output_model","NodeId":"-7869","OutputType":null},{"Name":"predictions","NodeId":"-7869","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='247,375,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,128,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='371,455,200,200'/><NodePosition Node='-86' Position='1078,418,200,200'/><NodePosition Node='-238' Position='381,189,200,200'/><NodePosition Node='-245' Position='385,280,200,200'/><NodePosition Node='-254' Position='1078,236,200,200'/><NodePosition Node='-261' Position='1081,327,200,200'/><NodePosition Node='-312' Position='832,729,200,200'/><NodePosition Node='-7869' Position='565,576,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":false}
[2019-01-23 10:39:33.744729] INFO: bigquant: instruments.v2 开始运行..
[2019-01-23 10:39:33.817741] INFO: bigquant: 命中缓存
[2019-01-23 10:39:33.818999] INFO: bigquant: instruments.v2 运行完成[0.187974s].
[2019-01-23 10:39:33.934124] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
[2019-01-23 10:39:33.939354] INFO: bigquant: 命中缓存
[2019-01-23 10:39:33.940381] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.118275s].
[2019-01-23 10:39:34.118560] INFO: bigquant: input_features.v1 开始运行..
[2019-01-23 10:39:34.124142] INFO: bigquant: 命中缓存
[2019-01-23 10:39:34.125098] INFO: bigquant: input_features.v1 运行完成[0.182666s].
[2019-01-23 10:39:34.238709] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-01-23 10:39:34.243714] INFO: bigquant: 命中缓存
[2019-01-23 10:39:34.244543] INFO: bigquant: general_feature_extractor.v7 运行完成[0.113802s].
[2019-01-23 10:39:34.346937] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-01-23 10:39:34.417285] INFO: bigquant: 命中缓存
[2019-01-23 10:39:34.419642] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.172749s].
[2019-01-23 10:39:34.548205] INFO: bigquant: join.v3 开始运行..
[2019-01-23 10:39:34.554353] INFO: bigquant: 命中缓存
[2019-01-23 10:39:34.614879] INFO: bigquant: join.v3 运行完成[0.191786s].
[2019-01-23 10:39:34.719372] INFO: bigquant: dropnan.v1 开始运行..
[2019-01-23 10:39:34.724788] INFO: bigquant: 命中缓存
[2019-01-23 10:39:34.725681] INFO: bigquant: dropnan.v1 运行完成[0.107794s].
[2019-01-23 10:39:34.833033] INFO: bigquant: instruments.v2 开始运行..
[2019-01-23 10:39:34.838348] INFO: bigquant: 命中缓存
[2019-01-23 10:39:34.839175] INFO: bigquant: instruments.v2 运行完成[0.111054s].
[2019-01-23 10:39:34.949655] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-01-23 10:39:35.017693] INFO: bigquant: 命中缓存
[2019-01-23 10:39:35.018692] INFO: bigquant: general_feature_extractor.v7 运行完成[0.174554s].
[2019-01-23 10:39:35.136281] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-01-23 10:39:35.140935] INFO: bigquant: 命中缓存
[2019-01-23 10:39:35.141855] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.120868s].
[2019-01-23 10:39:35.338882] INFO: bigquant: dropnan.v1 开始运行..
[2019-01-23 10:39:35.344120] INFO: bigquant: 命中缓存
[2019-01-23 10:39:35.345231] INFO: bigquant: dropnan.v1 运行完成[0.201104s].
[2019-01-23 10:39:35.529019] INFO: bigquant: gradient_boosting_regressor.v1 开始运行..
[2019-01-23 10:39:35.536740] INFO: bigquant: 命中缓存
[2019-01-23 10:39:35.537967] INFO: bigquant: gradient_boosting_regressor.v1 运行完成[0.121578s].
[2019-01-23 10:39:35.742843] INFO: bigquant: backtest.v8 开始运行..
[2019-01-23 10:39:35.745796] INFO: bigquant: biglearning backtest:V8.1.7
[2019-01-23 10:39:35.748031] INFO: bigquant: product_type:stock by specified
[2019-01-23 10:41:39.237358] INFO: bigquant: 读取股票行情完成:1285997
[2019-01-23 10:42:38.144354] INFO: algo: TradingAlgorithm V1.4.4
[2019-01-23 10:43:08.727271] INFO: algo: trading transform...
[2019-01-23 10:43:23.126224] INFO: Performance: Simulated 244 trading days out of 244.
[2019-01-23 10:43:23.128115] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2019-01-23 10:43:23.129151] INFO: Performance: last close: 2015-12-31 15:00:00+00:00
- 收益率46.0%
- 年化收益率47.82%
- 基准收益率5.58%
- 阿尔法0.34
- 贝塔0.69
- 夏普比率1.3
- 胜率0.6
- 盈亏比0.9
- 收益波动率31.52%
- 信息比率0.1
- 最大回撤28.11%
[2019-01-23 10:43:30.720825] INFO: bigquant: backtest.v8 运行完成[235.098934s].