版本 v1.0
### 多头排列回踩均线选股策略的交易规则
### 策略构建步骤
### 策略的实现
可视化策略实现如下:
# 本代码由可视化策略环境自动生成 2021年12月6日 22:14
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
# 回测引擎:初始化函数,只执行一次
def m3_initialize_bigquant_run(context):
# 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
context.stock_max_num = 20 # 最多同时持有20只股票
# 回测引擎:每日数据处理函数,每天执行一次
def m3_handle_data_bigquant_run(context, data):
# 回测引擎:每日数据处理函数,每天执行一次
today = data.current_dt.strftime('%Y-%m-%d') # 日期
# 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表和对应的最新市值
stock_hold_now = {e.symbol: p.amount * p.last_sale_price
for e, p in context.perf_tracker.position_tracker.positions.items()}
hold_num=len(stock_hold_now)
# 记录用于买入股票的可用现金,因为是早盘卖股票,需要记录卖出的股票市值并在买入下单前更新可用现金;
# 如果是早盘买尾盘卖,则卖出时不需更新可用现金,因为尾盘卖出股票所得现金无法使用
cash_for_buy = context.portfolio.cash
# 获取当日符合买入/卖出条件的股票列表
try:
buy_stock = context.daily_stock_buy[today] # 当日符合买入条件的股票
except:
buy_stock=[]
try:
sell_stock = context.daily_stock_sell[today] # 当日符合卖出条件的股票
except:
sell_stock = []
# 需要卖出的股票:已有持仓中符合卖出条件的股票
stock_to_sell = [i for i in stock_hold_now if i in sell_stock]
# 需要买入的股票:没有持仓且符合买入条件的股票
stock_to_buy = [i for i in buy_stock if i not in stock_hold_now]
# 卖出
for instrument in stock_to_sell:
# 如果该股票停牌,则没法成交。因此需要用can_trade方法检查下该股票的状态
# 如果返回真值,则可以正常下单,否则会出错
# 因为stock是字符串格式,我们用symbol方法将其转化成平台可以接受的形式:Equity格式
if data.can_trade(context.symbol(instrument)):
# order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,即卖出全部股票,可参考回测文档
context.order_target_percent(context.symbol(instrument), 0)
# 因为设置的是早盘卖出早盘买入,需要根据卖出的股票更新可用现金;如果设置尾盘卖出早盘买入,则不需更新可用现金(可以删除下面的语句)
cash_for_buy += stock_hold_now[instrument]
hold_num-=1
# 当日还允许买入建仓的股票数目
stock_can_buy_num = context.stock_max_num - hold_num
stock_to_buy_num = min(stock_can_buy_num,len(stock_to_buy))
# 如果当天没有买入的股票,就返回
if stock_to_buy_num == 0:
return
# 记录已经买入的股票数量
buy_num = 0
for instrument in stock_to_buy:
# 使用当日可用现金等资金比例下单买入
cash = cash_for_buy / stock_to_buy_num
if data.can_trade(context.symbol(instrument)) and buy_num<stock_to_buy_num:
# 整百下单
current_price = data.current(context.symbol(instrument), 'price')
amount = math.floor(cash / current_price / 100) * 100
context.order(context.symbol(instrument), amount)
buy_num += 1
# 回测引擎:准备数据,只执行一次
def m3_prepare_bigquant_run(context):
# 加载预测数据
df = context.options['data'].read_df()
# 函数:求满足开仓条件的股票列表
def open_pos_con(df):
return list(df[df['buy_condition']>0].instrument)
# 函数:求满足平仓条件的股票列表
def close_pos_con(df):
return list(df[df['sell_condition']>0].instrument)
# 每日买入股票的数据框
context.daily_stock_buy= df.groupby('date').apply(open_pos_con)
# 每日卖出股票的数据框
context.daily_stock_sell= df.groupby('date').apply(close_pos_con)
m1 = M.input_features.v1(
features="""# #号开始的表示注释
# 多个特征,每行一个,可以包含基础特征和衍生特征
buy_condition=where((mean(close_0,5)>mean(close_0,10))&(mean(close_0,10)>mean(close_0,20))&(mean(close_0,20)>mean(close_0,40))&(mean(close_0,40)>mean(close_0,120))&(low_0<mean(close_0,10)),1,0)
sell_condition=where(mean(close_0,5)<mean(close_0,40),1,0)"""
)
m2 = M.instruments.v2(
start_date=T.live_run_param('trading_date', '2013-01-01'),
end_date=T.live_run_param('trading_date', '2013-05-01'),
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m7 = M.general_feature_extractor.v7(
instruments=m2.data,
features=m1.data,
start_date='',
end_date='',
before_start_days=300
)
m8 = M.derived_feature_extractor.v3(
input_data=m7.data,
features=m1.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False
)
m4 = M.dropnan.v2(
input_data=m8.data
)
m3 = M.trade.v4(
instruments=m2.data,
options_data=m4.data,
start_date='',
end_date='',
initialize=m3_initialize_bigquant_run,
handle_data=m3_handle_data_bigquant_run,
prepare=m3_prepare_bigquant_run,
volume_limit=0.025,
order_price_field_buy='open',
order_price_field_sell='open',
capital_base=1000000,
auto_cancel_non_tradable_orders=True,
data_frequency='daily',
price_type='后复权',
product_type='股票',
plot_charts=True,
backtest_only=False,
benchmark='000300.HIX'
)
[2021-02-21 16:44:47.232780] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-02-21 16:44:47.377640] INFO: moduleinvoker: input_features.v1 运行完成[0.144843s].
[2021-02-21 16:44:47.384924] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-02-21 16:44:47.484441] INFO: moduleinvoker: instruments.v2 运行完成[0.099449s].
[2021-02-21 16:44:47.507230] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-02-21 16:44:48.807815] INFO: 基础特征抽取: 年份 2012, 特征行数=476284
[2021-02-21 16:44:49.545056] INFO: 基础特征抽取: 年份 2013, 特征行数=177341
[2021-02-21 16:44:49.720301] INFO: 基础特征抽取: 总行数: 653625
[2021-02-21 16:44:49.738185] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[2.230955s].
[2021-02-21 16:44:49.742997] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-02-21 16:44:57.736683] INFO: derived_feature_extractor: 提取完成 buy_condition=where((mean(close_0,5)>mean(close_0,10))&(mean(close_0,10)>mean(close_0,20))&(mean(close_0,20)>mean(close_0,40))&(mean(close_0,40)>mean(close_0,120))&(low_0[2021-02-21 16:44:58.874208] INFO: derived_feature_extractor: 提取完成 sell_condition=where(mean(close_0,5)[2021-02-21 16:45:00.625352] INFO: derived_feature_extractor: /y_2012, 476284[2021-02-21 16:45:01.524537] INFO: derived_feature_extractor: /y_2013, 177341[2021-02-21 16:45:01.786129] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[12.043109s].[2021-02-21 16:45:01.793116] INFO: moduleinvoker: dropnan.v2 开始运行..[2021-02-21 16:45:02.338980] INFO: dropnan: /y_2012, 476284/476284[2021-02-21 16:45:02.568159] INFO: dropnan: /y_2013, 177341/177341[2021-02-21 16:45:02.763988] INFO: dropnan: 行数: 653625/653625[2021-02-21 16:45:02.867472] INFO: moduleinvoker: dropnan.v2 运行完成[1.074331s].[2021-02-21 16:45:05.021842] INFO: moduleinvoker: backtest.v8 开始运行..[2021-02-21 16:45:05.026235] INFO: backtest: biglearning backtest:V8.5.0[2021-02-21 16:45:06.530937] INFO: backtest: product_type:stock by specified[2021-02-21 16:45:06.653738] INFO: moduleinvoker: cached.v2 开始运行..[2021-02-21 16:45:14.904516] INFO: backtest: 读取股票行情完成:859753[2021-02-21 16:45:17.547632] INFO: moduleinvoker: cached.v2 运行完成[10.893919s].[2021-02-21 16:45:18.608687] INFO: algo: TradingAlgorithm V1.8.0[2021-02-21 16:45:18.893787] INFO: algo: trading transform...[2021-02-21 16:45:23.568678] INFO: Performance: Simulated 74 trading days out of 74.[2021-02-21 16:45:23.571312] INFO: Performance: first open: 2013-01-04 09:30:00+00:00[2021-02-21 16:45:23.574306] INFO: Performance: last close: 2013-04-26 15:00:00+00:00[2021-02-21 16:45:26.532911] INFO: moduleinvoker: backtest.v8 运行完成[21.511064s].[2021-02-21 16:45:26.534578] INFO: moduleinvoker: trade.v4 运行完成[23.658153s].