克隆策略

RSI买入卖出

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-9372:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-9372:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-9379:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-9386:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-9393:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3691:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3705:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-9403:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-9386:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-9403:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-9379:input_data","from_node_id":"-9372:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-9379:data"},{"to_node_id":"-9393:input_data","from_node_id":"-9386:data"},{"to_node_id":"-6814:input_data","from_node_id":"-9393:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"-3691:model"},{"to_node_id":"-3691:training_ds","from_node_id":"-3705:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-3709:data"},{"to_node_id":"-3709:input_data","from_node_id":"-6814:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2019-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n1*((shift(close, -3) / shift(open, -1))-1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"where((ta_rsi(close_1, timeperiod=2) > ta_rsi(close_0, timeperiod=2)), (correlation(max(close_0,20)/low_0,min(close_0,20)/high_0),21), (-1* 1))\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-11-11","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-9372","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"400","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-9372"},{"name":"features","node_id":"-9372"}],"output_ports":[{"name":"data","node_id":"-9372"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-9379","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-9379"},{"name":"features","node_id":"-9379"}],"output_ports":[{"name":"data","node_id":"-9379"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-9386","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"400","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-9386"},{"name":"features","node_id":"-9386"}],"output_ports":[{"name":"data","node_id":"-9386"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-9393","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-9393"},{"name":"features","node_id":"-9393"}],"output_ports":[{"name":"data","node_id":"-9393"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-9403","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 50\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.055\n context.options['hold_days'] = 2\n context.datecont = 0\n \n context.short_ma = 5 # 移动平均线指标参数\n context.long_ma = 30 \n context.short_macd = 2 # macd指标参数\n context.long_macd = 4\n context.smoothperiod = 4\n context.rsiperiod = 2\n from zipline.finance.slippage import SlippageModel\n class FixedPriceSlippage(SlippageModel):\n def process_order(self, data, order, bar_volume=0, trigger_check_price=0):\n if order.limit is None:\n price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell\n price = data.current(order.asset, price_field)\n else:\n price = data.current(order.asset, self._price_field_buy)\n # 返回希望成交的价格和数量\n return (price, order.amount)\n # 设置price_field,默认是开盘买入,收盘卖出\n context.fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='close')\n context.set_slippage(us_equities=context.fix_slippage)\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"def bigquant_run(context, data):\n \n import talib\n \n #获取当日日期\n today = data.current_dt.strftime('%Y-%m-%d')\n stock_hold_now = [equity.symbol for equity in context.portfolio.positions ]\n #大盘风控模块,读取风控数据 \n benckmark_risk=context.benckmark_risk[today]\n context.symbol\n #当risk为1时,市场有风险,全部平仓,不再执行其它操作\n if benckmark_risk > 0:\n for instrument in stock_hold_now:\n context.order_target(symbol(instrument), 0)\n print(today,'大盘风控止损触发,全仓卖出')\n return\n\n #------------------------------------------止损模块START--------------------------------------------\n equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n \n # 新建当日止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n stoploss_stock = [] \n if len(equities) > 0:\n for i in equities.keys():\n stock_market_price = data.current(context.symbol(i), 'price') # 最新市场价格\n last_sale_date = equities[i].last_sale_date # 上次交易日期\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days # 持仓天数\n # 建仓以来的最高价\n highest_price_since_buy = data.history(context.symbol(i), 'high', hold_days, '1d').max()\n # 确定止损位置\n stoploss_line = highest_price_since_buy - highest_price_since_buy * 0.025\n #record('止损位置', stoploss_line)\n # 如果价格下穿止损位置\n if stock_market_price < stoploss_line:\n context.order_target_percent(context.symbol(i), 0) \n stoploss_stock.append(i)\n if len(stoploss_stock)>0:\n print('日期:', today, '股票:', stoploss_stock, '出现跟踪止损状况')\n #-------------------------------------------止损模块END--------------------------------------------- \n \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n \n intervals = []\n temp = 0\n rsi_predict = pd.read_csv(\"/home/bigquant/work/userlib/repeated.csv\",encoding=\"utf-8\",names=[\"M1\",\"M2\",\"M3\",\"M4\",\"M5\",\"M6\",\"M7\",\"M8\",\"M9\",\"M10\",\"M11\",\"M12\",\"M13\"]) \n rsi_instruments=list(ranker_prediction.instrument[:len(context.stock_weights)])\n \n \n for i,instrument in enumerate(rsi_instruments):\n volume_since_buy = data.history(context.symbol(instrument), 'volume', 3, '1d')\n close_price = data.current(context.symbol(instrument), 'close') #当收盘价\n high_price = data.current(context.symbol(instrument), 'high') #当天最高价\n last_close_price = data.history(context.symbol(instrument), 'close', 1, '1d')#前一天收盘价\n last_open_price = data.history(context.symbol(instrument), 'open', 1, '1d')#前一天收盘价\n last_high_price = data.history(context.symbol(instrument), 'high', 1, '1d')#前一天收盘价\n last_low_price = data.history(context.symbol(instrument), 'low', 1, '1d')#前一天收盘价\n \n MA2 = data.history(context.symbol(instrument), 'price',2, '1d').mean() # 短期均线值\n MA5 = data.history(context.symbol(instrument), 'price',5, '1d').mean() # 长期均线值\n MA10 = data.history(context.symbol(instrument), 'price',10, '1d').mean() # 短期均线值\n MA21 = data.history(context.symbol(instrument), 'price',21, '1d').mean() # 长期均线值\n MA60 = data.history(context.symbol(instrument), 'price',60, '1d').mean() # 短期均线值\n MA120 = data.history(context.symbol(instrument), 'price',120, '1d').mean() # 长期均线值 \n MA250 = data.history(context.symbol(instrument), 'price',250, '1d').mean() # 短期均线值\n\n MAX21 = data.history(context.symbol(instrument), 'high',21, '1d').max() \n MIN21 = data.history(context.symbol(instrument), 'low',21, '1d').min() \n \n MAX10 = data.history(context.symbol(instrument), 'high',10, '1d').max() \n MIN10 = data.history(context.symbol(instrument), 'low',10, '1d').min() \n \n \n prices = data.history(context.symbol(instrument), 'price', context.long_ma, '1d') # 读取历史数据\n close_price_1 = data.history(context.symbol(instrument), 'close',30,'1d') #当收盘价 \n rsi2 = talib.RSI(np.array(prices), timeperiod=2)\n CLOSEOPEN=last_close_price/last_open_price\n HIGHCLOSE=last_high_price/last_close_price\n MAX21LOW=MAX21/last_low_price\n MIN21HIGH=MIN21/last_high_price\n \n MAX10LOW=MAX21/last_low_price\n MIN10HIGH=MIN21/last_high_price\n\n \n data3 = pd.DataFrame()\n data3[\"M1\"] = CLOSEOPEN\n data3[\"M2\"] = HIGHCLOSE\n data3[\"M3\"] = MAX21LOW\n data3[\"M4\"] = MIN21HIGH \n data3[\"M5\"] = MAX10LOW\n data3[\"M6\"] = MIN10HIGH \n \n data3[\"M1\"] = data3[\"M1\"].apply(convert_number) \n data3[\"M2\"] = data3[\"M2\"].apply(convert_number)\n data3[\"M3\"] = data3[\"M3\"].apply(convert_number)\n data3[\"M4\"] = data3[\"M4\"].apply(convert_number)\n data3[\"M5\"] = data3[\"M5\"].apply(convert_number)\n data3[\"M6\"] = data3[\"M6\"].apply(convert_number) \n\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n \ndef convert_number(x,intervals):\n #区间 0.025\n for i in range(len(intervals)):\n if x == intervals[i]:\n return (intervals[i], intervals[i+1])\n if x > intervals[i] and x< intervals[i+1]:\n return (round(intervals[i],3), round(intervals[i+1],3))\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n #在数据准备函数中一次性计算每日的大盘风控条件相比于在handle中每日计算风控条件可以提高回测速度\n # 多取50天的数据便于计算均值(保证回测的第一天均值不为Nan值),其中context.start_date和context.end_date是回测指定的起始时间和终止时间\n start_date= (pd.to_datetime(context.start_date) - datetime.timedelta(days=50)).strftime('%Y-%m-%d') \n df=DataSource('bar1d_index_CN_STOCK_A').read(start_date=start_date,end_date=context.end_date,fields=['close'])\n benckmark_data=df[df.instrument=='000001.HIX']\n #计算上证指数5日涨幅\n benckmark_data['ret5']=benckmark_data['close']/benckmark_data['close'].shift(5)-1\n #计算大盘风控条件,如果5日涨幅小于-4%则设置风险状态risk为1,否则为0\n benckmark_data['risk'] = np.where(benckmark_data['ret5']<-0.05,1,0)\n #修改日期格式为字符串(便于在handle中使用字符串日期索引来查看每日的风险状态)\n benckmark_data['date']=benckmark_data['date'].apply(lambda x:x.strftime('%Y-%m-%d'))\n #设置日期为索引\n benckmark_data.set_index('date',inplace=True)\n #把风控序列输出给全局变量context.benckmark_risk\n context.benckmark_risk=benckmark_data['risk']\n \n industry_start_date = context.start_date\n end_date = context.end_date\n # 获取目前的行业列表\n industry = list(set(D.history_data(D.instruments(), end_date, end_date, ['industry_sw_level1']).industry_sw_level1))\n # 获取行业指数的行情数据\n industry = ['SW'+str(j)+'.SHA' for j in industry]\n data = D.history_data(industry, industry_start_date, end_date, ['close','name'])\n\n # 获取股票名称 用于过滤st和退市股\n context.name_df = DataSource('instruments_CN_STOCK_A').read()\n # 获取涨跌停状态\n context.price_limit_status = DataSource('stock_status_CN_STOCK_A').read(fields=['price_limit_status'])\n\n \n # 计算此处每日动量较高的行业\n ret_data = data.groupby('instrument').apply(calcu_ret)\n ret_data.reset_index(inplace=True, drop=True)\n ret_data['date'] = ret_data['date'].map(lambda x:x.strftime('%Y-%m-%d'))\n context.daily_buy_industry = pd.Series({dt:seek_head_industry(ret_data.set_index('date').loc[dt]) for dt in list(set(ret_data.date))})\n\n # 每个交易日 每个行业的优质股 \n # 优质股的确定依据是:净资产收益率 (TTM)、营业收入同比增长率、归属母公司股东的净利润同比增长率\n features_data = D.features(D.instruments(industry_start_date, end_date), industry_start_date, end_date, ['fs_roe_ttm_0', 'fs_operating_revenue_yoy_0', 'fs_net_profit_yoy_0', 'industry_sw_level1_0'])\n # 整理出每个行业的优质股票\n context.daily_buy_stock = features_data.groupby(['date', 'industry_sw_level1_0']).apply(seek_head_stock)\n\n# 计算不同周期的动量\ndef calcu_ret(df):\n df = df.sort_values('date')\n for i in [3, 9, 21, 42, 84, 126]: # 分别代表2月、4月、半年的动量\n df['ret_%s'%i] = df['close']/df['close'].shift(i)-1 \n return df\n\n# 计算出得分\ndef seek_head_industry(df):\n for j in ['ret_3','ret_9','ret_21','ret_42','ret_84','ret_126']:\n df['%s'%j] = df['%s'%j].rank(ascending=True) \n df['score'] =0.5*df['ret_3']+ 0.3*df['ret_9']+0.5*df['ret_21']+0.5*df['ret_42']+0.5*df['ret_84']+0.5*df['ret_126'] # 得分的权重分别为0.4、0.3、0.3\n result = df.sort_values('score', ascending=False)\n return list(result.instrument)[:3] # 前3个行业\n\n# 选出特定行业优质股票\ndef seek_head_stock(df):\n result = df.sort_values(['fs_roe_ttm_0', 'fs_net_profit_yoy_0', 'fs_operating_revenue_yoy_0'], ascending=False)\n return list(result.instrument[:10]) # 每个行业选10只股票","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"def bigquant_run(context, data):\n df_price_limit_status=context.price_limit_status.set_index('date')\n today=data.current_dt.strftime('%Y-%m-%d')\n # 得到当前未完成订单\n for orders in get_open_orders().values():\n # 循环,撤销订单\n for _order in orders:\n ins=str(_order.sid.symbol)\n if data.can_trade(_order.sid):\n #判断一下如果当日涨停,则取消卖单\n if df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status.loc[today]>2 and _order.amount<0:\n #cancel_order(_order)\n print(today,'尾盘涨停',ins) ","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-9403"},{"name":"options_data","node_id":"-9403"},{"name":"history_ds","node_id":"-9403"},{"name":"benchmark_ds","node_id":"-9403"},{"name":"trading_calendar","node_id":"-9403"}],"output_ports":[{"name":"raw_perf","node_id":"-9403"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-3691","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-3691"},{"name":"features","node_id":"-3691"},{"name":"test_ds","node_id":"-3691"},{"name":"base_model","node_id":"-3691"}],"output_ports":[{"name":"model","node_id":"-3691"},{"name":"feature_gains","node_id":"-3691"},{"name":"m_lazy_run","node_id":"-3691"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-3705","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-3705"},{"name":"features","node_id":"-3705"}],"output_ports":[{"name":"data","node_id":"-3705"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-3709","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-3709"},{"name":"features","node_id":"-3709"}],"output_ports":[{"name":"data","node_id":"-3709"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-6814","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-6814"}],"output_ports":[{"name":"data","node_id":"-6814"},{"name":"left_data","node_id":"-6814"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='264,-12,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='72,182,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='730,-122,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='384,268,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='846,766,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1233,105,200,200'/><node_position Node='-9372' Position='469,86,200,200'/><node_position Node='-9379' Position='451,194,200,200'/><node_position Node='-9386' Position='1191,349,200,200'/><node_position Node='-9393' Position='1191,449,200,200'/><node_position Node='-9403' Position='593,944,200,200'/><node_position Node='-3691' Position='638,561,200,200'/><node_position Node='-3705' Position='376,469,200,200'/><node_position Node='-3709' Position='1156,698,200,200'/><node_position Node='-6814' Position='1189,538,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [22]:
    # 本代码由可视化策略环境自动生成 2021年11月15日 02:00
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 50
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.055
        context.options['hold_days'] = 2
        context.datecont = 0
      
        context.short_ma = 5 # 移动平均线指标参数
        context.long_ma = 30 
        context.short_macd = 2 # macd指标参数
        context.long_macd = 4
        context.smoothperiod = 4
        context.rsiperiod = 2
        from zipline.finance.slippage import SlippageModel
        class FixedPriceSlippage(SlippageModel):
            def process_order(self, data, order, bar_volume=0, trigger_check_price=0):
                if order.limit is None:
                    price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell
                    price = data.current(order.asset, price_field)
                else:
                    price = data.current(order.asset, self._price_field_buy)
                # 返回希望成交的价格和数量
                return (price, order.amount)
        # 设置price_field,默认是开盘买入,收盘卖出
        context.fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='close')
        context.set_slippage(us_equities=context.fix_slippage)
    
    def m19_handle_data_bigquant_run(context, data):
            
        import talib
            
        #获取当日日期
        today = data.current_dt.strftime('%Y-%m-%d')
        stock_hold_now = [equity.symbol for equity in context.portfolio.positions ]
        #大盘风控模块,读取风控数据    
        benckmark_risk=context.benckmark_risk[today]
        context.symbol
        #当risk为1时,市场有风险,全部平仓,不再执行其它操作
        if benckmark_risk > 0:
            for instrument in stock_hold_now:
                context.order_target(symbol(instrument), 0)
            print(today,'大盘风控止损触发,全仓卖出')
            return
    
        #------------------------------------------止损模块START--------------------------------------------
        equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}
        
        # 新建当日止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断
        stoploss_stock = [] 
        if len(equities) > 0:
            for i in equities.keys():
                stock_market_price = data.current(context.symbol(i), 'price')  # 最新市场价格
                last_sale_date = equities[i].last_sale_date   # 上次交易日期
                delta_days = data.current_dt - last_sale_date  
                hold_days = delta_days.days # 持仓天数
                # 建仓以来的最高价
                highest_price_since_buy = data.history(context.symbol(i), 'high', hold_days, '1d').max()
                # 确定止损位置
                stoploss_line = highest_price_since_buy - highest_price_since_buy * 0.025
                #record('止损位置', stoploss_line)
                # 如果价格下穿止损位置
                if stock_market_price < stoploss_line:
                    context.order_target_percent(context.symbol(i), 0)     
                    stoploss_stock.append(i)
            if len(stoploss_stock)>0:
                print('日期:', today, '股票:', stoploss_stock, '出现跟踪止损状况')
        #-------------------------------------------止损模块END---------------------------------------------    
       
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
        
        intervals = []
        temp = 0
        rsi_predict = pd.read_csv("/home/bigquant/work/userlib/repeated.csv",encoding="utf-8",names=["M1","M2","M3","M4","M5","M6","M7","M8","M9","M10","M11","M12","M13"])    
        rsi_instruments=list(ranker_prediction.instrument[:len(context.stock_weights)])
        
        
        for i,instrument in enumerate(rsi_instruments):
            volume_since_buy = data.history(context.symbol(instrument), 'volume', 3, '1d')
            close_price = data.current(context.symbol(instrument), 'close')  #当收盘价
            high_price = data.current(context.symbol(instrument), 'high')  #当天最高价
            last_close_price = data.history(context.symbol(instrument), 'close', 1, '1d')#前一天收盘价
            last_open_price = data.history(context.symbol(instrument), 'open', 1, '1d')#前一天收盘价
            last_high_price = data.history(context.symbol(instrument), 'high', 1, '1d')#前一天收盘价
            last_low_price = data.history(context.symbol(instrument), 'low', 1, '1d')#前一天收盘价
            
            MA2 = data.history(context.symbol(instrument), 'price',2, '1d').mean() # 短期均线值
            MA5 = data.history(context.symbol(instrument), 'price',5, '1d').mean() # 长期均线值
            MA10 = data.history(context.symbol(instrument), 'price',10, '1d').mean() # 短期均线值
            MA21 = data.history(context.symbol(instrument), 'price',21, '1d').mean() # 长期均线值
            MA60 = data.history(context.symbol(instrument), 'price',60, '1d').mean() # 短期均线值
            MA120 = data.history(context.symbol(instrument), 'price',120, '1d').mean() # 长期均线值        
            MA250 = data.history(context.symbol(instrument), 'price',250, '1d').mean() # 短期均线值
    
            MAX21 = data.history(context.symbol(instrument), 'high',21, '1d').max() 
            MIN21 = data.history(context.symbol(instrument), 'low',21, '1d').min() 
            
            MAX10 = data.history(context.symbol(instrument), 'high',10, '1d').max() 
            MIN10 = data.history(context.symbol(instrument), 'low',10, '1d').min() 
         
            
            prices = data.history(context.symbol(instrument), 'price', context.long_ma, '1d') # 读取历史数据
            close_price_1 = data.history(context.symbol(instrument), 'close',30,'1d')  #当收盘价        
            rsi2 = talib.RSI(np.array(prices), timeperiod=2)
            CLOSEOPEN=last_close_price/last_open_price
            HIGHCLOSE=last_high_price/last_close_price
            MAX21LOW=MAX21/last_low_price
            MIN21HIGH=MIN21/last_high_price
            
            MAX10LOW=MAX21/last_low_price
            MIN10HIGH=MIN21/last_high_price
    
     
            data3 = pd.DataFrame()
            data3["M1"] = CLOSEOPEN
            data3["M2"] = HIGHCLOSE
            data3["M3"] = MAX21LOW
            data3["M4"] = MIN21HIGH    
            data3["M5"] = MAX10LOW
            data3["M6"] = MIN10HIGH   
            
            data3["M1"] = data3["M1"].apply(convert_number) 
            data3["M2"] = data3["M2"].apply(convert_number)
            data3["M3"] = data3["M3"].apply(convert_number)
            data3["M4"] = data3["M4"].apply(convert_number)
            data3["M5"] = data3["M5"].apply(convert_number)
            data3["M6"] = data3["M6"].apply(convert_number)   
    
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
            # print('rank order for sell %s' % instruments)
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
                
    def convert_number(x,intervals):
        #区间 0.025
        for i in range(len(intervals)):
            if x == intervals[i]:
                return (intervals[i], intervals[i+1])
            if x > intervals[i] and x< intervals[i+1]:
                return (round(intervals[i],3), round(intervals[i+1],3))
    
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        #在数据准备函数中一次性计算每日的大盘风控条件相比于在handle中每日计算风控条件可以提高回测速度
        # 多取50天的数据便于计算均值(保证回测的第一天均值不为Nan值),其中context.start_date和context.end_date是回测指定的起始时间和终止时间
        start_date= (pd.to_datetime(context.start_date) - datetime.timedelta(days=50)).strftime('%Y-%m-%d') 
        df=DataSource('bar1d_index_CN_STOCK_A').read(start_date=start_date,end_date=context.end_date,fields=['close'])
        benckmark_data=df[df.instrument=='000001.HIX']
        #计算上证指数5日涨幅
        benckmark_data['ret5']=benckmark_data['close']/benckmark_data['close'].shift(5)-1
        #计算大盘风控条件,如果5日涨幅小于-4%则设置风险状态risk为1,否则为0
        benckmark_data['risk'] = np.where(benckmark_data['ret5']<-0.05,1,0)
        #修改日期格式为字符串(便于在handle中使用字符串日期索引来查看每日的风险状态)
        benckmark_data['date']=benckmark_data['date'].apply(lambda x:x.strftime('%Y-%m-%d'))
        #设置日期为索引
        benckmark_data.set_index('date',inplace=True)
        #把风控序列输出给全局变量context.benckmark_risk
        context.benckmark_risk=benckmark_data['risk']
        
        industry_start_date = context.start_date
        end_date = context.end_date
        # 获取目前的行业列表
        industry = list(set(D.history_data(D.instruments(), end_date, end_date, ['industry_sw_level1']).industry_sw_level1))
        # 获取行业指数的行情数据
        industry = ['SW'+str(j)+'.SHA' for j in industry]
        data = D.history_data(industry, industry_start_date, end_date, ['close','name'])
    
        # 获取股票名称 用于过滤st和退市股
        context.name_df = DataSource('instruments_CN_STOCK_A').read()
        # 获取涨跌停状态
        context.price_limit_status = DataSource('stock_status_CN_STOCK_A').read(fields=['price_limit_status'])
    
        
        # 计算此处每日动量较高的行业
        ret_data = data.groupby('instrument').apply(calcu_ret)
        ret_data.reset_index(inplace=True, drop=True)
        ret_data['date'] = ret_data['date'].map(lambda x:x.strftime('%Y-%m-%d'))
        context.daily_buy_industry = pd.Series({dt:seek_head_industry(ret_data.set_index('date').loc[dt]) for dt in list(set(ret_data.date))})
    
        # 每个交易日 每个行业的优质股 
        # 优质股的确定依据是:净资产收益率 (TTM)、营业收入同比增长率、归属母公司股东的净利润同比增长率
        features_data = D.features(D.instruments(industry_start_date, end_date), industry_start_date, end_date, ['fs_roe_ttm_0', 'fs_operating_revenue_yoy_0', 'fs_net_profit_yoy_0', 'industry_sw_level1_0'])
        # 整理出每个行业的优质股票
        context.daily_buy_stock = features_data.groupby(['date', 'industry_sw_level1_0']).apply(seek_head_stock)
    
    # 计算不同周期的动量
    def calcu_ret(df):
        df = df.sort_values('date')
        for i in [3, 9, 21, 42, 84, 126]: # 分别代表2月、4月、半年的动量
            df['ret_%s'%i] = df['close']/df['close'].shift(i)-1 
        return df
    
    # 计算出得分
    def seek_head_industry(df):
        for j in ['ret_3','ret_9','ret_21','ret_42','ret_84','ret_126']:
            df['%s'%j] = df['%s'%j].rank(ascending=True) 
        df['score'] =0.5*df['ret_3']+ 0.3*df['ret_9']+0.5*df['ret_21']+0.5*df['ret_42']+0.5*df['ret_84']+0.5*df['ret_126']  # 得分的权重分别为0.4、0.3、0.3
        result = df.sort_values('score', ascending=False)
        return list(result.instrument)[:3]  # 前3个行业
    
    # 选出特定行业优质股票
    def seek_head_stock(df):
        result = df.sort_values(['fs_roe_ttm_0', 'fs_net_profit_yoy_0', 'fs_operating_revenue_yoy_0'], ascending=False)
        return list(result.instrument[:10]) # 每个行业选10只股票
    def m19_before_trading_start_bigquant_run(context, data):
        df_price_limit_status=context.price_limit_status.set_index('date')
        today=data.current_dt.strftime('%Y-%m-%d')
        # 得到当前未完成订单
        for orders in get_open_orders().values():
            # 循环,撤销订单
            for _order in orders:
                ins=str(_order.sid.symbol)
                if data.can_trade(_order.sid):
                    #判断一下如果当日涨停,则取消卖单
                    if  df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status.loc[today]>2 and _order.amount<0:
                        #cancel_order(_order)
                        print(today,'尾盘涨停',ins) 
    
    m1 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2010-01-01'),
        end_date=T.live_run_param('trading_date', '2019-01-01'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    1*((shift(close, -3) / shift(open, -1))-1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=True
    )
    
    m3 = M.input_features.v1(
        features="""where((ta_rsi(close_1, timeperiod=2) > ta_rsi(close_0, timeperiod=2)), (correlation(max(close_0,20)/low_0,min(close_0,20)/high_0),21), (-1* 1))
    """
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=400
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m7 = M.join.v3(
        data1=m2.data,
        data2=m16.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m5 = M.dropnan.v2(
        input_data=m7.data
    )
    
    m4 = M.stock_ranker_train.v6(
        training_ds=m5.data,
        features=m3.data,
        learning_algorithm='排序',
        number_of_leaves=30,
        minimum_docs_per_leaf=1000,
        number_of_trees=20,
        learning_rate=0.1,
        max_bins=1023,
        feature_fraction=1,
        data_row_fraction=1,
        ndcg_discount_base=1,
        m_lazy_run=False
    )
    
    m9 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2019-01-01'),
        end_date=T.live_run_param('trading_date', '2021-11-11'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m17 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=400
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m17.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m11 = M.chinaa_stock_filter.v1(
        input_data=m18.data,
        index_constituent_cond=['全部'],
        board_cond=['上证主板', '深证主板', '创业板'],
        industry_cond=['传媒/信息服务', '公用事业', '农林牧渔', '化工', '医药生物', '商业贸易', '国防军工', '家用电器', '建筑材料/建筑建材', '有色金属', '机械设备', '汽车/交运设备', '电子', '电气设备', '计算机', '轻工制造', '通信', '采掘', '钢铁', '非银金融', '食品饮料'],
        st_cond=['正常'],
        delist_cond=['非退市'],
        output_left_data=False
    )
    
    m10 = M.dropnan.v2(
        input_data=m11.data
    )
    
    m8 = M.stock_ranker_predict.v5(
        model=m4.model,
        data=m10.data,
        m_lazy_run=False
    )
    
    m19 = M.trade.v4(
        instruments=m9.data,
        options_data=m8.predictions,
        start_date='',
        end_date='',
        initialize=m19_initialize_bigquant_run,
        handle_data=m19_handle_data_bigquant_run,
        prepare=m19_prepare_bigquant_run,
        before_trading_start=m19_before_trading_start_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark=''
    )
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-9bf5d570ad1c41a88db70c44901c2198"}/bigcharts-data-end
    ---------------------------------------------------------------------------
    HistoryWindowStartsBeforeData             Traceback (most recent call last)
    <ipython-input-22-5bbb6d72813f> in <module>
        404 )
        405 
    --> 406 m19 = M.trade.v4(
        407     instruments=m9.data,
        408     options_data=m8.predictions,
    
    <ipython-input-22-5bbb6d72813f> in m19_handle_data_bigquant_run(context, data)
        106         MA60 = data.history(context.symbol(instrument), 'price',60, '1d').mean() # 短期均线值
        107         MA120 = data.history(context.symbol(instrument), 'price',120, '1d').mean() # 长期均线值
    --> 108         MA250 = data.history(context.symbol(instrument), 'price',250, '1d').mean() # 短期均线值
        109 
        110         MAX21 = data.history(context.symbol(instrument), 'high',21, '1d').max()
    
    HistoryWindowStartsBeforeData: History window extends before 2018-01-02. To use this history window, start the backtest on or after 2019-01-11.