{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-9372:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-9372:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-9379:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-9386:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-9393:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3691:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3705:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-9403:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-9386:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-9403:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-9379:input_data","from_node_id":"-9372:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-9379:data"},{"to_node_id":"-9393:input_data","from_node_id":"-9386:data"},{"to_node_id":"-6814:input_data","from_node_id":"-9393:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"-3691:model"},{"to_node_id":"-3691:training_ds","from_node_id":"-3705:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-3709:data"},{"to_node_id":"-3709:input_data","from_node_id":"-6814:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2019-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n1*((shift(close, -3) / shift(open, -1))-1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"where((ta_rsi(close_1, timeperiod=2) > ta_rsi(close_0, timeperiod=2)), (correlation(max(close_0,20)/low_0,min(close_0,20)/high_0),21), (-1* 1))\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-11-11","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-9372","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"400","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-9372"},{"name":"features","node_id":"-9372"}],"output_ports":[{"name":"data","node_id":"-9372"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-9379","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-9379"},{"name":"features","node_id":"-9379"}],"output_ports":[{"name":"data","node_id":"-9379"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-9386","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"400","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-9386"},{"name":"features","node_id":"-9386"}],"output_ports":[{"name":"data","node_id":"-9386"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-9393","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-9393"},{"name":"features","node_id":"-9393"}],"output_ports":[{"name":"data","node_id":"-9393"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-9403","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 50\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.055\n context.options['hold_days'] = 2\n context.datecont = 0\n \n context.short_ma = 5 # 移动平均线指标参数\n context.long_ma = 30 \n context.short_macd = 2 # macd指标参数\n context.long_macd = 4\n context.smoothperiod = 4\n context.rsiperiod = 2\n from zipline.finance.slippage import SlippageModel\n class FixedPriceSlippage(SlippageModel):\n def process_order(self, data, order, bar_volume=0, trigger_check_price=0):\n if order.limit is None:\n price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell\n price = data.current(order.asset, price_field)\n else:\n price = data.current(order.asset, self._price_field_buy)\n # 返回希望成交的价格和数量\n return (price, order.amount)\n # 设置price_field,默认是开盘买入,收盘卖出\n context.fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='close')\n context.set_slippage(us_equities=context.fix_slippage)\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"def bigquant_run(context, data):\n \n import talib\n \n #获取当日日期\n today = data.current_dt.strftime('%Y-%m-%d')\n stock_hold_now = [equity.symbol for equity in context.portfolio.positions ]\n #大盘风控模块,读取风控数据 \n benckmark_risk=context.benckmark_risk[today]\n context.symbol\n #当risk为1时,市场有风险,全部平仓,不再执行其它操作\n if benckmark_risk > 0:\n for instrument in stock_hold_now:\n context.order_target(symbol(instrument), 0)\n print(today,'大盘风控止损触发,全仓卖出')\n return\n\n #------------------------------------------止损模块START--------------------------------------------\n equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n \n # 新建当日止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n stoploss_stock = [] \n if len(equities) > 0:\n for i in equities.keys():\n stock_market_price = data.current(context.symbol(i), 'price') # 最新市场价格\n last_sale_date = equities[i].last_sale_date # 上次交易日期\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days # 持仓天数\n # 建仓以来的最高价\n highest_price_since_buy = data.history(context.symbol(i), 'high', hold_days, '1d').max()\n # 确定止损位置\n stoploss_line = highest_price_since_buy - highest_price_since_buy * 0.025\n #record('止损位置', stoploss_line)\n # 如果价格下穿止损位置\n if stock_market_price < stoploss_line:\n context.order_target_percent(context.symbol(i), 0) \n stoploss_stock.append(i)\n if len(stoploss_stock)>0:\n print('日期:', today, '股票:', stoploss_stock, '出现跟踪止损状况')\n #-------------------------------------------止损模块END--------------------------------------------- \n \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n \n intervals = []\n temp = 0\n rsi_predict = pd.read_csv(\"/home/bigquant/work/userlib/repeated.csv\",encoding=\"utf-8\",names=[\"M1\",\"M2\",\"M3\",\"M4\",\"M5\",\"M6\",\"M7\",\"M8\",\"M9\",\"M10\",\"M11\",\"M12\",\"M13\"]) \n rsi_instruments=list(ranker_prediction.instrument[:len(context.stock_weights)])\n \n \n for i,instrument in enumerate(rsi_instruments):\n volume_since_buy = data.history(context.symbol(instrument), 'volume', 3, '1d')\n close_price = data.current(context.symbol(instrument), 'close') #当收盘价\n high_price = data.current(context.symbol(instrument), 'high') #当天最高价\n last_close_price = data.history(context.symbol(instrument), 'close', 1, '1d')#前一天收盘价\n last_open_price = data.history(context.symbol(instrument), 'open', 1, '1d')#前一天收盘价\n last_high_price = data.history(context.symbol(instrument), 'high', 1, '1d')#前一天收盘价\n last_low_price = data.history(context.symbol(instrument), 'low', 1, '1d')#前一天收盘价\n \n MA2 = data.history(context.symbol(instrument), 'price',2, '1d').mean() # 短期均线值\n MA5 = data.history(context.symbol(instrument), 'price',5, '1d').mean() # 长期均线值\n MA10 = data.history(context.symbol(instrument), 'price',10, '1d').mean() # 短期均线值\n MA21 = data.history(context.symbol(instrument), 'price',21, '1d').mean() # 长期均线值\n MA60 = data.history(context.symbol(instrument), 'price',60, '1d').mean() # 短期均线值\n MA120 = data.history(context.symbol(instrument), 'price',120, '1d').mean() # 长期均线值 \n MA250 = data.history(context.symbol(instrument), 'price',250, '1d').mean() # 短期均线值\n\n MAX21 = data.history(context.symbol(instrument), 'high',21, '1d').max() \n MIN21 = data.history(context.symbol(instrument), 'low',21, '1d').min() \n \n MAX10 = data.history(context.symbol(instrument), 'high',10, '1d').max() \n MIN10 = data.history(context.symbol(instrument), 'low',10, '1d').min() \n \n \n prices = data.history(context.symbol(instrument), 'price', context.long_ma, '1d') # 读取历史数据\n close_price_1 = data.history(context.symbol(instrument), 'close',30,'1d') #当收盘价 \n rsi2 = talib.RSI(np.array(prices), timeperiod=2)\n CLOSEOPEN=last_close_price/last_open_price\n HIGHCLOSE=last_high_price/last_close_price\n MAX21LOW=MAX21/last_low_price\n MIN21HIGH=MIN21/last_high_price\n \n MAX10LOW=MAX21/last_low_price\n MIN10HIGH=MIN21/last_high_price\n\n \n data3 = pd.DataFrame()\n data3[\"M1\"] = CLOSEOPEN\n data3[\"M2\"] = HIGHCLOSE\n data3[\"M3\"] = MAX21LOW\n data3[\"M4\"] = MIN21HIGH \n data3[\"M5\"] = MAX10LOW\n data3[\"M6\"] = MIN10HIGH \n \n data3[\"M1\"] = data3[\"M1\"].apply(convert_number) \n data3[\"M2\"] = data3[\"M2\"].apply(convert_number)\n data3[\"M3\"] = data3[\"M3\"].apply(convert_number)\n data3[\"M4\"] = data3[\"M4\"].apply(convert_number)\n data3[\"M5\"] = data3[\"M5\"].apply(convert_number)\n data3[\"M6\"] = data3[\"M6\"].apply(convert_number) \n\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n \ndef convert_number(x,intervals):\n #区间 0.025\n for i in range(len(intervals)):\n if x == intervals[i]:\n return (intervals[i], intervals[i+1])\n if x > intervals[i] and x< intervals[i+1]:\n return (round(intervals[i],3), round(intervals[i+1],3))\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n #在数据准备函数中一次性计算每日的大盘风控条件相比于在handle中每日计算风控条件可以提高回测速度\n # 多取50天的数据便于计算均值(保证回测的第一天均值不为Nan值),其中context.start_date和context.end_date是回测指定的起始时间和终止时间\n start_date= (pd.to_datetime(context.start_date) - datetime.timedelta(days=50)).strftime('%Y-%m-%d') \n df=DataSource('bar1d_index_CN_STOCK_A').read(start_date=start_date,end_date=context.end_date,fields=['close'])\n benckmark_data=df[df.instrument=='000001.HIX']\n #计算上证指数5日涨幅\n benckmark_data['ret5']=benckmark_data['close']/benckmark_data['close'].shift(5)-1\n #计算大盘风控条件,如果5日涨幅小于-4%则设置风险状态risk为1,否则为0\n benckmark_data['risk'] = np.where(benckmark_data['ret5']<-0.05,1,0)\n #修改日期格式为字符串(便于在handle中使用字符串日期索引来查看每日的风险状态)\n benckmark_data['date']=benckmark_data['date'].apply(lambda x:x.strftime('%Y-%m-%d'))\n #设置日期为索引\n benckmark_data.set_index('date',inplace=True)\n #把风控序列输出给全局变量context.benckmark_risk\n context.benckmark_risk=benckmark_data['risk']\n \n industry_start_date = context.start_date\n end_date = context.end_date\n # 获取目前的行业列表\n industry = list(set(D.history_data(D.instruments(), end_date, end_date, ['industry_sw_level1']).industry_sw_level1))\n # 获取行业指数的行情数据\n industry = ['SW'+str(j)+'.SHA' for j in industry]\n data = D.history_data(industry, industry_start_date, end_date, ['close','name'])\n\n # 获取股票名称 用于过滤st和退市股\n context.name_df = DataSource('instruments_CN_STOCK_A').read()\n # 获取涨跌停状态\n context.price_limit_status = DataSource('stock_status_CN_STOCK_A').read(fields=['price_limit_status'])\n\n \n # 计算此处每日动量较高的行业\n ret_data = data.groupby('instrument').apply(calcu_ret)\n ret_data.reset_index(inplace=True, drop=True)\n ret_data['date'] = ret_data['date'].map(lambda x:x.strftime('%Y-%m-%d'))\n context.daily_buy_industry = pd.Series({dt:seek_head_industry(ret_data.set_index('date').loc[dt]) for dt in list(set(ret_data.date))})\n\n # 每个交易日 每个行业的优质股 \n # 优质股的确定依据是:净资产收益率 (TTM)、营业收入同比增长率、归属母公司股东的净利润同比增长率\n features_data = D.features(D.instruments(industry_start_date, end_date), industry_start_date, end_date, ['fs_roe_ttm_0', 'fs_operating_revenue_yoy_0', 'fs_net_profit_yoy_0', 'industry_sw_level1_0'])\n # 整理出每个行业的优质股票\n context.daily_buy_stock = features_data.groupby(['date', 'industry_sw_level1_0']).apply(seek_head_stock)\n\n# 计算不同周期的动量\ndef calcu_ret(df):\n df = df.sort_values('date')\n for i in [3, 9, 21, 42, 84, 126]: # 分别代表2月、4月、半年的动量\n df['ret_%s'%i] = df['close']/df['close'].shift(i)-1 \n return df\n\n# 计算出得分\ndef seek_head_industry(df):\n for j in ['ret_3','ret_9','ret_21','ret_42','ret_84','ret_126']:\n df['%s'%j] = df['%s'%j].rank(ascending=True) \n df['score'] =0.5*df['ret_3']+ 0.3*df['ret_9']+0.5*df['ret_21']+0.5*df['ret_42']+0.5*df['ret_84']+0.5*df['ret_126'] # 得分的权重分别为0.4、0.3、0.3\n result = df.sort_values('score', ascending=False)\n return list(result.instrument)[:3] # 前3个行业\n\n# 选出特定行业优质股票\ndef seek_head_stock(df):\n result = df.sort_values(['fs_roe_ttm_0', 'fs_net_profit_yoy_0', 'fs_operating_revenue_yoy_0'], ascending=False)\n return list(result.instrument[:10]) # 每个行业选10只股票","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"def bigquant_run(context, data):\n df_price_limit_status=context.price_limit_status.set_index('date')\n today=data.current_dt.strftime('%Y-%m-%d')\n # 得到当前未完成订单\n for orders in get_open_orders().values():\n # 循环,撤销订单\n for _order in orders:\n ins=str(_order.sid.symbol)\n if data.can_trade(_order.sid):\n #判断一下如果当日涨停,则取消卖单\n if df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status.loc[today]>2 and _order.amount<0:\n #cancel_order(_order)\n print(today,'尾盘涨停',ins) ","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-9403"},{"name":"options_data","node_id":"-9403"},{"name":"history_ds","node_id":"-9403"},{"name":"benchmark_ds","node_id":"-9403"},{"name":"trading_calendar","node_id":"-9403"}],"output_ports":[{"name":"raw_perf","node_id":"-9403"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-3691","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-3691"},{"name":"features","node_id":"-3691"},{"name":"test_ds","node_id":"-3691"},{"name":"base_model","node_id":"-3691"}],"output_ports":[{"name":"model","node_id":"-3691"},{"name":"feature_gains","node_id":"-3691"},{"name":"m_lazy_run","node_id":"-3691"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-3705","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-3705"},{"name":"features","node_id":"-3705"}],"output_ports":[{"name":"data","node_id":"-3705"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-3709","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-3709"},{"name":"features","node_id":"-3709"}],"output_ports":[{"name":"data","node_id":"-3709"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-6814","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-6814"}],"output_ports":[{"name":"data","node_id":"-6814"},{"name":"left_data","node_id":"-6814"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='264,-12,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='72,182,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='730,-122,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='384,268,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='846,766,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1233,105,200,200'/><node_position Node='-9372' Position='469,86,200,200'/><node_position Node='-9379' Position='451,194,200,200'/><node_position Node='-9386' Position='1191,349,200,200'/><node_position Node='-9393' Position='1191,449,200,200'/><node_position Node='-9403' Position='593,944,200,200'/><node_position Node='-3691' Position='638,561,200,200'/><node_position Node='-3705' Position='376,469,200,200'/><node_position Node='-3709' Position='1156,698,200,200'/><node_position Node='-6814' Position='1189,538,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-11-15 01:44:27.913563] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-11-15 01:44:28.083414] INFO: moduleinvoker: 命中缓存
[2021-11-15 01:44:28.085190] INFO: moduleinvoker: instruments.v2 运行完成[0.171637s].
[2021-11-15 01:44:28.094072] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-11-15 01:44:32.843031] INFO: 自动标注(股票): 加载历史数据: 5414277 行
[2021-11-15 01:44:32.844840] INFO: 自动标注(股票): 开始标注 ..
[2021-11-15 01:44:39.578126] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[11.48404s].
[2021-11-15 01:44:39.585948] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-11-15 01:44:39.597810] INFO: moduleinvoker: 命中缓存
[2021-11-15 01:44:39.599204] INFO: moduleinvoker: input_features.v1 运行完成[0.013274s].
[2021-11-15 01:44:39.616109] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-11-15 01:44:40.441520] INFO: 基础特征抽取: 年份 2008, 特征行数=37738
[2021-11-15 01:44:41.774242] INFO: 基础特征抽取: 年份 2009, 特征行数=374574
[2021-11-15 01:44:43.363259] INFO: 基础特征抽取: 年份 2010, 特征行数=431567
[2021-11-15 01:44:45.137400] INFO: 基础特征抽取: 年份 2011, 特征行数=511455
[2021-11-15 01:44:46.813593] INFO: 基础特征抽取: 年份 2012, 特征行数=565675
[2021-11-15 01:44:48.597260] INFO: 基础特征抽取: 年份 2013, 特征行数=564168
[2021-11-15 01:44:50.434825] INFO: 基础特征抽取: 年份 2014, 特征行数=569948
[2021-11-15 01:44:52.125057] INFO: 基础特征抽取: 年份 2015, 特征行数=569698
[2021-11-15 01:44:54.678275] INFO: 基础特征抽取: 年份 2016, 特征行数=641546
[2021-11-15 01:44:57.458777] INFO: 基础特征抽取: 年份 2017, 特征行数=743233
[2021-11-15 01:45:00.636618] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2021-11-15 01:45:01.744733] INFO: 基础特征抽取: 年份 2019, 特征行数=0
[2021-11-15 01:45:01.956174] INFO: 基础特征抽取: 总行数: 5826589
[2021-11-15 01:45:01.960796] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[22.344677s].
[2021-11-15 01:45:01.967844] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-11-15 01:45:16.055955] INFO: derived_feature_extractor: 提取完成 rsi_0 = ta_rsi(close_0, timeperiod=2), 5.290s
[2021-11-15 01:45:21.447282] INFO: derived_feature_extractor: 提取完成 rsi_1 = ta_rsi(close_1, timeperiod=2), 5.390s
[2021-11-15 01:45:21.456458] INFO: derived_feature_extractor: 提取完成 CLOSEOPEN=close_0/open_0, 0.008s
[2021-11-15 01:45:21.464879] INFO: derived_feature_extractor: 提取完成 HIGHCLOSE=high_0/close_0, 0.007s
[2021-11-15 01:45:21.978765] INFO: derived_feature_extractor: 提取完成 MAX21=max(close_0,20)/low_0, 0.513s
[2021-11-15 01:45:22.491840] INFO: derived_feature_extractor: 提取完成 MIN21=min(close_0,20)/high_0, 0.512s
[2021-11-15 01:45:23.003127] INFO: derived_feature_extractor: 提取完成 MAX10=max(close_0,10)/low_0, 0.510s
[2021-11-15 01:45:23.514556] INFO: derived_feature_extractor: 提取完成 MIN10=min(close_0,10)/high_0, 0.510s
[2021-11-15 01:45:27.311669] INFO: derived_feature_extractor: 提取完成 MA2 = mean(close_0,2), 3.796s
[2021-11-15 01:45:31.210108] INFO: derived_feature_extractor: 提取完成 MA5 = mean(close_0,5), 3.897s
[2021-11-15 01:45:35.142493] INFO: derived_feature_extractor: 提取完成 MA10 = mean(close_0,10), 3.931s
[2021-11-15 01:45:39.561922] INFO: derived_feature_extractor: 提取完成 MA21 = mean(close_0,21), 4.418s
[2021-11-15 01:45:43.701860] INFO: derived_feature_extractor: 提取完成 MA60 = mean(close_0,60), 4.138s
[2021-11-15 01:45:47.848810] INFO: derived_feature_extractor: 提取完成 MA120 = mean(close_0,120), 4.145s
[2021-11-15 01:45:52.136897] INFO: derived_feature_extractor: 提取完成 MA250 = mean(close_0,250), 4.286s
[2021-11-15 01:45:53.349757] INFO: derived_feature_extractor: /y_2008, 37738
[2021-11-15 01:45:53.923016] INFO: derived_feature_extractor: /y_2009, 374574
[2021-11-15 01:45:54.752296] INFO: derived_feature_extractor: /y_2010, 431567
[2021-11-15 01:45:55.707179] INFO: derived_feature_extractor: /y_2011, 511455
[2021-11-15 01:45:56.797075] INFO: derived_feature_extractor: /y_2012, 565675
[2021-11-15 01:45:58.004836] INFO: derived_feature_extractor: /y_2013, 564168
[2021-11-15 01:45:59.238957] INFO: derived_feature_extractor: /y_2014, 569948
[2021-11-15 01:46:00.444155] INFO: derived_feature_extractor: /y_2015, 569698
[2021-11-15 01:46:01.635465] INFO: derived_feature_extractor: /y_2016, 641546
[2021-11-15 01:46:03.063086] INFO: derived_feature_extractor: /y_2017, 743233
[2021-11-15 01:46:04.640715] INFO: derived_feature_extractor: /y_2018, 816987
[2021-11-15 01:46:05.320152] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[63.352288s].
[2021-11-15 01:46:05.329669] INFO: moduleinvoker: join.v3 开始运行..
[2021-11-15 01:46:14.412224] INFO: join: /y_2008, 行数=0/37738, 耗时=1.446808s
[2021-11-15 01:46:16.863996] INFO: join: /y_2009, 行数=0/374574, 耗时=2.449762s
[2021-11-15 01:46:19.517745] INFO: join: /y_2010, 行数=431036/431567, 耗时=2.650492s
[2021-11-15 01:46:22.359243] INFO: join: /y_2011, 行数=510928/511455, 耗时=2.837539s
[2021-11-15 01:46:25.664802] INFO: join: /y_2012, 行数=564588/565675, 耗时=3.301356s
[2021-11-15 01:46:28.910187] INFO: join: /y_2013, 行数=563145/564168, 耗时=3.240762s
[2021-11-15 01:46:32.242735] INFO: join: /y_2014, 行数=567880/569948, 耗时=3.327823s
[2021-11-15 01:46:35.523628] INFO: join: /y_2015, 行数=560435/569698, 耗时=3.276256s
[2021-11-15 01:46:38.902054] INFO: join: /y_2016, 行数=637477/641546, 耗时=3.373851s
[2021-11-15 01:46:42.705429] INFO: join: /y_2017, 行数=738265/743233, 耗时=3.797633s
[2021-11-15 01:46:46.697894] INFO: join: /y_2018, 行数=802867/816987, 耗时=3.986743s
[2021-11-15 01:46:46.810353] INFO: join: 最终行数: 5376621
[2021-11-15 01:46:46.836857] INFO: moduleinvoker: join.v3 运行完成[41.507182s].
[2021-11-15 01:46:46.847807] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-11-15 01:46:46.992828] INFO: dropnan: /y_2008, 0/0
[2021-11-15 01:46:47.018836] INFO: dropnan: /y_2009, 0/0
[2021-11-15 01:46:47.720556] INFO: dropnan: /y_2010, 363553/431036
[2021-11-15 01:46:48.553852] INFO: dropnan: /y_2011, 426883/510928
[2021-11-15 01:46:49.462686] INFO: dropnan: /y_2012, 508115/564588
[2021-11-15 01:46:50.397311] INFO: dropnan: /y_2013, 545486/563145
[2021-11-15 01:46:51.458258] INFO: dropnan: /y_2014, 552613/567880
[2021-11-15 01:46:52.463548] INFO: dropnan: /y_2015, 515849/560435
[2021-11-15 01:46:53.509292] INFO: dropnan: /y_2016, 597461/637477
[2021-11-15 01:46:54.737679] INFO: dropnan: /y_2017, 646319/738265
[2021-11-15 01:46:56.116822] INFO: dropnan: /y_2018, 738089/802867
[2021-11-15 01:46:56.313372] INFO: dropnan: 行数: 4894368/5376621
[2021-11-15 01:46:56.322745] INFO: moduleinvoker: dropnan.v2 运行完成[9.474926s].
[2021-11-15 01:46:56.332299] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2021-11-15 01:47:03.025767] INFO: StockRanker: 特征预处理 ..
[2021-11-15 01:47:11.205947] INFO: StockRanker: prepare data: training ..
[2021-11-15 01:47:19.349902] INFO: StockRanker: sort ..
[2021-11-15 01:48:20.235478] INFO: StockRanker训练: dc22c7a2 准备训练: 4894368 行数
[2021-11-15 01:48:20.237156] INFO: StockRanker训练: AI模型训练,将在4894368*15=7341.55万数据上对模型训练进行20轮迭代训练。预计将需要22~44分钟。请耐心等待。
[2021-11-15 01:48:20.471062] INFO: StockRanker训练: 正在训练 ..
[2021-11-15 01:48:20.520667] INFO: StockRanker训练: 任务状态: Pending
[2021-11-15 01:48:30.562063] INFO: StockRanker训练: 任务状态: Running
[2021-11-15 01:49:00.700051] INFO: StockRanker训练: 00:00:28.8195781, finished iteration 1
[2021-11-15 01:49:20.776379] INFO: StockRanker训练: 00:00:49.9125706, finished iteration 2
[2021-11-15 01:49:40.867098] INFO: StockRanker训练: 00:01:11.4219957, finished iteration 3
[2021-11-15 01:50:00.954496] INFO: StockRanker训练: 00:01:36.7384061, finished iteration 4
[2021-11-15 01:50:31.078748] INFO: StockRanker训练: 00:02:04.2477695, finished iteration 5
[2021-11-15 01:51:01.206201] INFO: StockRanker训练: 00:02:32.3117463, finished iteration 6
[2021-11-15 01:51:31.344090] INFO: StockRanker训练: 00:03:01.9379880, finished iteration 7
[2021-11-15 01:52:01.472908] INFO: StockRanker训练: 00:03:31.7846060, finished iteration 8
[2021-11-15 01:52:31.629686] INFO: StockRanker训练: 00:04:03.8006611, finished iteration 9
[2021-11-15 01:53:01.754473] INFO: StockRanker训练: 00:04:37.6559063, finished iteration 10
[2021-11-15 01:53:31.877748] INFO: StockRanker训练: 00:05:03.8231992, finished iteration 11
[2021-11-15 01:54:02.033886] INFO: StockRanker训练: 00:05:30.2059077, finished iteration 12
[2021-11-15 01:54:22.137765] INFO: StockRanker训练: 00:05:57.2497080, finished iteration 13
[2021-11-15 01:54:52.275963] INFO: StockRanker训练: 00:06:25.6178879, finished iteration 14
[2021-11-15 01:55:22.423269] INFO: StockRanker训练: 00:06:53.4935099, finished iteration 15
[2021-11-15 01:55:52.559177] INFO: StockRanker训练: 00:07:21.7218294, finished iteration 16
[2021-11-15 01:56:22.716325] INFO: StockRanker训练: 00:07:49.3531211, finished iteration 17
[2021-11-15 01:56:42.803226] INFO: StockRanker训练: 00:08:17.4164273, finished iteration 18
[2021-11-15 01:57:12.925857] INFO: StockRanker训练: 00:08:46.0558649, finished iteration 19
[2021-11-15 01:57:43.117618] INFO: StockRanker训练: 00:09:15.1899706, finished iteration 20
[2021-11-15 01:57:43.119138] INFO: StockRanker训练: 任务状态: Succeeded
[2021-11-15 01:57:43.296572] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[646.964282s].
[2021-11-15 01:57:43.311440] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-11-15 01:57:43.324925] INFO: moduleinvoker: 命中缓存
[2021-11-15 01:57:43.326499] INFO: moduleinvoker: instruments.v2 运行完成[0.015065s].
[2021-11-15 01:57:43.343062] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-11-15 01:57:44.981374] INFO: 基础特征抽取: 年份 2017, 特征行数=80874
[2021-11-15 01:57:48.100506] INFO: 基础特征抽取: 年份 2018, 特征行数=816396
[2021-11-15 01:57:51.770180] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2021-11-15 01:57:55.603341] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2021-11-15 01:57:59.124177] INFO: 基础特征抽取: 年份 2021, 特征行数=894681
[2021-11-15 01:57:59.300158] INFO: 基础特征抽取: 总行数: 3622779
[2021-11-15 01:57:59.307894] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[15.964852s].
[2021-11-15 01:57:59.314713] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-11-15 01:58:09.942589] INFO: derived_feature_extractor: 提取完成 rsi_0 = ta_rsi(close_0, timeperiod=2), 5.476s
[2021-11-15 01:58:15.782267] INFO: derived_feature_extractor: 提取完成 rsi_1 = ta_rsi(close_1, timeperiod=2), 5.838s
[2021-11-15 01:58:15.788937] INFO: derived_feature_extractor: 提取完成 CLOSEOPEN=close_0/open_0, 0.005s
[2021-11-15 01:58:15.795136] INFO: derived_feature_extractor: 提取完成 HIGHCLOSE=high_0/close_0, 0.005s
[2021-11-15 01:58:16.126488] INFO: derived_feature_extractor: 提取完成 MAX21=max(close_0,20)/low_0, 0.330s
[2021-11-15 01:58:16.494781] INFO: derived_feature_extractor: 提取完成 MIN21=min(close_0,20)/high_0, 0.365s
[2021-11-15 01:58:16.811860] INFO: derived_feature_extractor: 提取完成 MAX10=max(close_0,10)/low_0, 0.316s
[2021-11-15 01:58:17.133811] INFO: derived_feature_extractor: 提取完成 MIN10=min(close_0,10)/high_0, 0.320s
[2021-11-15 01:58:19.650040] INFO: derived_feature_extractor: 提取完成 MA2 = mean(close_0,2), 2.515s
[2021-11-15 01:58:22.134996] INFO: derived_feature_extractor: 提取完成 MA5 = mean(close_0,5), 2.483s
[2021-11-15 01:58:24.615014] INFO: derived_feature_extractor: 提取完成 MA10 = mean(close_0,10), 2.478s
[2021-11-15 01:58:27.067021] INFO: derived_feature_extractor: 提取完成 MA21 = mean(close_0,21), 2.451s
[2021-11-15 01:58:29.535275] INFO: derived_feature_extractor: 提取完成 MA60 = mean(close_0,60), 2.467s
[2021-11-15 01:58:32.037767] INFO: derived_feature_extractor: 提取完成 MA120 = mean(close_0,120), 2.501s
[2021-11-15 01:58:34.503954] INFO: derived_feature_extractor: 提取完成 MA250 = mean(close_0,250), 2.465s
[2021-11-15 01:58:35.370364] INFO: derived_feature_extractor: /y_2017, 80874
[2021-11-15 01:58:36.593339] INFO: derived_feature_extractor: /y_2018, 816396
[2021-11-15 01:58:38.374952] INFO: derived_feature_extractor: /y_2019, 884867
[2021-11-15 01:58:40.169887] INFO: derived_feature_extractor: /y_2020, 945961
[2021-11-15 01:58:41.965404] INFO: derived_feature_extractor: /y_2021, 894681
[2021-11-15 01:58:42.691895] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[43.377163s].
[2021-11-15 01:58:42.700486] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2021-11-15 01:58:43.473904] INFO: A股股票过滤: 过滤 /y_2017, 66806/0/80874
[2021-11-15 01:58:47.160754] INFO: A股股票过滤: 过滤 /y_2018, 674898/0/816396
[2021-11-15 01:58:51.152079] INFO: A股股票过滤: 过滤 /y_2019, 721770/0/884867
[2021-11-15 01:58:55.818535] INFO: A股股票过滤: 过滤 /y_2020, 739295/0/945961
[2021-11-15 01:59:00.354660] INFO: A股股票过滤: 过滤 /y_2021, 678361/0/894681
[2021-11-15 01:59:00.361374] INFO: A股股票过滤: 过滤完成, 2881130 + 0
[2021-11-15 01:59:00.400406] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[17.699906s].
[2021-11-15 01:59:00.407940] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-11-15 01:59:00.602523] INFO: dropnan: /y_2017, 0/66806
[2021-11-15 01:59:01.006496] INFO: dropnan: /y_2018, 43242/674898
[2021-11-15 01:59:01.777438] INFO: dropnan: /y_2019, 675489/721770
[2021-11-15 01:59:02.592109] INFO: dropnan: /y_2020, 703256/739295
[2021-11-15 01:59:03.329870] INFO: dropnan: /y_2021, 622007/678361
[2021-11-15 01:59:03.449449] INFO: dropnan: 行数: 2043994/2881130
[2021-11-15 01:59:03.468495] INFO: moduleinvoker: dropnan.v2 运行完成[3.060549s].
[2021-11-15 01:59:03.476664] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2021-11-15 01:59:04.066170] INFO: StockRanker预测: /y_2018 ..
[2021-11-15 01:59:05.135940] INFO: StockRanker预测: /y_2019 ..
[2021-11-15 01:59:07.384041] INFO: StockRanker预测: /y_2020 ..
[2021-11-15 01:59:09.586690] INFO: StockRanker预测: /y_2021 ..
[2021-11-15 01:59:13.900119] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[10.423437s].
[2021-11-15 01:59:13.978252] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-11-15 01:59:13.984020] INFO: backtest: biglearning backtest:V8.5.0
[2021-11-15 02:00:17.920142] INFO: backtest: product_type:stock by specified
[2021-11-15 02:00:18.090322] INFO: moduleinvoker: cached.v2 开始运行..
[2021-11-15 02:00:26.616209] INFO: backtest: 读取股票行情完成:3881543
[2021-11-15 02:00:31.661502] INFO: moduleinvoker: cached.v2 运行完成[13.571214s].
[2021-11-15 02:00:34.680490] INFO: algo: TradingAlgorithm V1.8.5
[2021-11-15 02:00:36.009737] INFO: algo: trading transform...
[2021-11-15 02:00:37.783089] ERROR: moduleinvoker: module name: backtest, module version: v8, trackeback: zipline.errors.HistoryWindowStartsBeforeData: History window extends before 2018-01-02. To use this history window, start the backtest on or after 2019-01-11.
[2021-11-15 02:00:37.788131] ERROR: moduleinvoker: module name: trade, module version: v4, trackeback: zipline.errors.HistoryWindowStartsBeforeData: History window extends before 2018-01-02. To use this history window, start the backtest on or after 2019-01-11.
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-9bf5d570ad1c41a88db70c44901c2198"}/bigcharts-data-end
---------------------------------------------------------------------------
HistoryWindowStartsBeforeData Traceback (most recent call last)
<ipython-input-22-5bbb6d72813f> in <module>
404 )
405
--> 406 m19 = M.trade.v4(
407 instruments=m9.data,
408 options_data=m8.predictions,
<ipython-input-22-5bbb6d72813f> in m19_handle_data_bigquant_run(context, data)
106 MA60 = data.history(context.symbol(instrument), 'price',60, '1d').mean() # 短期均线值
107 MA120 = data.history(context.symbol(instrument), 'price',120, '1d').mean() # 长期均线值
--> 108 MA250 = data.history(context.symbol(instrument), 'price',250, '1d').mean() # 短期均线值
109
110 MAX21 = data.history(context.symbol(instrument), 'high',21, '1d').max()
HistoryWindowStartsBeforeData: History window extends before 2018-01-02. To use this history window, start the backtest on or after 2019-01-11.