克隆策略

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-326:features_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29:data"},{"to_node_id":"-331:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-459:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-459:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70:data"},{"to_node_id":"-337:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29:features","from_node_id":"-326:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35:features","from_node_id":"-326:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70:features","from_node_id":"-326:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76:features","from_node_id":"-326:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-331:data"},{"to_node_id":"-86:input_data","from_node_id":"-337:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -1) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"avg_amount_4/amount_0\navg_amount_9/amount_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v6","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v2","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2017-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2017-3-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v6","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v2","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-326","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nst_status_0\nlist_board_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-326"}],"output_ports":[{"name":"data","node_id":"-326"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-331","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"st_status_0==0","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-331"}],"output_ports":[{"name":"data","node_id":"-331"},{"name":"left_data","node_id":"-331"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-337","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"st_status_0==0","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-337"}],"output_ports":[{"name":"data","node_id":"-337"},{"name":"left_data","node_id":"-337"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-459","module_id":"BigQuantSpace.trade.trade-v3","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n #大盘风控模块,以上证指数5日涨幅为例,如果大盘下跌较多,全部卖出并结束当日操作\n today_date = data.current_dt.strftime('%Y-%m-%d')\n benckmarch_prices = data.history(context.symbols('000001.HIX'), ['close'], 5, '1d')['close']\n benckmarch_control = benckmarch_prices[context.symbol('000001.HIX')][-1] / benckmarch_prices[context.symbol('000001.SHA')][0]\n if benckmarch_control < 0.998:\n position_all = context.portfolio.positions.keys()\n for i in position_all:\n context.order_target(i, 0)\n print('日期',today_date,'大盘风控止损触发')\n return \n #周期控制模块\n if context.trading_day_index%3!=0:#以3天换一次仓为例\n return\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()} \n\n #---------------------------START:止赢止损模块(含建仓期)--------------------\n today_date = data.current_dt.strftime('%Y-%m-%d')\n positions_stop={e.symbol:p.cost_basis \n for e,p in context.portfolio.positions.items()}\n # 新建当日止赢止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n current_stopwin_stock=[]\n current_stoploss_stock = [] \n if len(positions_stop)>0:\n for i in positions_stop.keys():\n stock_cost=positions_stop[i] \n stock_market_price=data.current(context.symbol(i),'price') \n # 赚3元且可以交易and not context.has_unfinished_sell_order(equities[i])\n if stock_market_price-stock_cost>=0.5 and data.can_trade(context.symbol(i)) and not context.has_unfinished_sell_order(i):\n context.order_target_percent(context.symbol(i),0) \n current_stopwin_stock.append(i)\n #print('日期:',today_date,'股票:',i,'出现止盈状况')\n print(today_date,'止盈股票列表',current_stopwin_stock)\n # 亏1元就止损and not context.has_unfinished_sell_order(equities[i])\n if stock_market_price - stock_cost <= -1 and data.can_trade(context.symbol(i)) and not context.has_unfinished_sell_order(i): \n context.order_target_percent(context.symbol(i),0) \n current_stoploss_stock.append(i)\n #print('日期:',today_date,'股票:',i,'出现止损状况')\n print(today_date,'止损股票列表',current_stoploss_stock)\n #--------------------------END: 止赢止损模块-----------------------------\n \n #--------------------------START:持有固定天数卖出(不含建仓期)---------------\n current_stopdays_stock = [] \n today = data.current_dt\n today_date = data.current_dt.strftime('%Y-%m-%d')\n # 不是建仓期(在前hold_days属于建仓期)\n if not is_staging:\n equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n if len(equities)>0:\n for i in equities:\n sid = equities[i].sid # 交易标的\n # 今天和上次交易的时间相隔hold_days就全部卖出 datetime.timedelta(context.options['hold_days'])也可以换成自己需要的天数,比如datetime.timedelta(5)\n if today-equities[i].last_sale_date>=datetime.timedelta(context.options['hold_days']) and data.can_trade(context.symbol(i)) and not context.has_unfinished_sell_order(equities[i]):\n context.order_target_percent(sid, 0)\n current_stopdays_stock.append(i)\n #print('日期:',today_date,'持有固定天数卖出股票',str(i))\n print(today_date,'固定天数卖出列表',current_stopdays_stock)\n #-------------------------------END:持有固定天数卖出--------------------------\n \n \n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n if instrument in current_stopwin_stock:\n continue\n if instrument in current_stoploss_stock:\n continue\n if instrument in current_stopdays_stock:\n continue\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n start_date = context.start_date\n end_date = context.end_date\n # 获取目前的行业列表\n industry = list(set(D.history_data(D.instruments(), end_date, end_date, ['industry_sw_level3']).industry_sw_level3))\n # 获取行业指数的行情数据\n industry = ['SW'+str(j)+'.SHA' for j in industry]\n data = D.history_data(industry, start_date, end_date, ['close','name'])\n\n # 获取股票名称 用于过滤st和退市股\n context.name_df = DataSource('instruments_CN_STOCK_A').read()\n # 获取涨跌停状态\n context.price_limit_status = DataSource('stock_status_CN_STOCK_A').read(fields=['price_limit_status'])\n\n \n # 计算此处每日动量较高的行业\n ret_data = data.groupby('instrument').apply(calcu_ret)\n ret_data.reset_index(inplace=True, drop=True)\n ret_data['date'] = ret_data['date'].map(lambda x:x.strftime('%Y-%m-%d'))\n context.daily_buy_industry = pd.Series({dt:seek_head_industry(ret_data.set_index('date').loc[dt]) for dt in list(set(ret_data.date))})\n\n # 每个交易日 每个行业的优质股 \n # 优质股的确定依据是:净资产收益率 (TTM)、营业收入同比增长率、归属母公司股东的净利润同比增长率\n features_data = D.features(D.instruments(start_date, end_date), start_date, end_date, ['fs_roe_ttm_0', 'fs_operating_revenue_yoy_0', 'fs_net_profit_yoy_0', 'industry_sw_level3_0'])\n # 整理出每个行业的优质股票\n context.daily_buy_stock = features_data.groupby(['date', 'industry_sw_level3_0']).apply(seek_head_stock)\n\n# 计算不同周期的动量\ndef calcu_ret(df):\n df = df.sort_values('date')\n for i in [3, 9, 21, 42, 84, 126]: # 分别代表2月、4月、半年的动量\n df['ret_%s'%i] = df['close']/df['close'].shift(i)-1 \n return df\n\n# 计算出得分\ndef seek_head_industry(df):\n for j in ['ret_3','ret_9','ret_21','ret_42','ret_84','ret_126']:\n df['%s'%j] = df['%s'%j].rank(ascending=True) \n df['score'] =0.3*df['ret_3']+ 0.2*df['ret_9']+0.15*df['ret_21']+0.15*df['ret_42']+0.1*df['ret_84']+0.1*df['ret_126'] # 得分的权重分别为0.4、0.3、0.3\n result = df.sort_values('score', ascending=False)\n return list(result.instrument)[:5] # 前3个行业\n\n# 选出特定行业优质股票\ndef seek_head_stock(df):\n result = df.sort_values(['fs_roe_ttm_0', 'fs_net_profit_yoy_0', 'fs_operating_revenue_yoy_0'], ascending=False)\n return list(result.instrument[:10]) # 每个行业选10只股票","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.1\n context.options['hold_days'] = 1\n\n from zipline.finance.slippage import SlippageModel\n class FixedPriceSlippage(SlippageModel):\n def process_order(self, data, order, bar_volume=0, trigger_check_price=0):\n if order.limit is None:\n price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell\n price = data.current(order.asset, price_field)\n else:\n price = data.current(order.asset, self._price_field_buy)\n # 返回希望成交的价格和数量\n return (price, order.amount)\n # 设置price_field,默认是开盘买入,收盘卖出\n context.fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='close')\n context.set_slippage(us_equities=context.fix_slippage)","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"def bigquant_run(context, data):\n df_price_limit_status=context.price_limit_status.set_index('date')\n today=data.current_dt.strftime('%Y-%m-%d')\n # 得到当前未完成订单\n for orders in get_open_orders().values():\n # 循环,撤销订单\n for _order in orders:\n ins=str(_order.sid.symbol)\n if data.can_trade(_order.sid):\n #判断一下如果当日涨停,则取消卖单\n if df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status.loc[today]>2 and _order.amount<0:\n #cancel_order(_order)取消卖单\n print(today,'尾盘涨停',ins) ","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-459"},{"name":"options_data","node_id":"-459"}],"output_ports":[{"name":"raw_perf","node_id":"-459"}],"cacheable":false,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-613","module_id":"BigQuantSpace.hyper_rolling_train.hyper_rolling_train-v1","parameters":[{"name":"run","value":"def bigquant_run(\n bq_graph,\n inputs,\n trading_days_market='CN', # 使用那个市场的交易日历\n train_instruments_mid='m1', # 训练数据 证券代码列表 模块id\n test_instruments_mid='m9', # 测试数据 证券代码列表 模块id\n predict_mid='m8', # 预测 模块id\n trade_mid='m17', # 回测 模块id\n start_date='2021-08-30', # 数据开始日期\n end_date=T.live_run_param('trading_date', '2021-10-16'), # 数据结束日期\n train_update_days=6, # 更新周期,按交易日计算,每多少天更新一次\n train_update_days_for_live=6, #模拟实盘模式下的更新周期,按交易日计算,每多少天更新一次。如果需要在模拟实盘阶段使用不同的模型更新周期,可以设置这个参数\n train_data_min_days=21, # 最小数据天数,按交易日计算,所以第一个滚动的结束日期是 从开始日期到开始日期+最小数据天数\n train_data_max_days=21, # 最大数据天数,按交易日计算,0,表示没有限制,否则每一个滚动的开始日期=max(此滚动的结束日期-最大数据天数, 开始日期\n rolling_count_for_live=0, #实盘模式下滚动次数,模拟实盘模式下,取最后多少次滚动。一般在模拟实盘模式下,只用到最后一次滚动训练的模型,这里可以设置为1;如果你的滚动训练数据时间段很短,以至于期间可能没有训练数据,这里可以设置大一点。0表示没有限制\n):\n def merge_datasources(input_1):\n df_list = [ds[0].read_df().set_index('date').loc[ds[1]:].reset_index() for ds in input_1]\n df = pd.concat(df_list)\n instrument_data = {\n 'start_date': df['date'].min().strftime('%Y-%m-%d'),\n 'end_date': df['date'].max().strftime('%Y-%m-%d'),\n 'instruments': list(set(df['instrument'])),\n }\n return Outputs(data=DataSource.write_df(df), instrument_data=DataSource.write_pickle(instrument_data))\n\n def gen_rolling_dates(trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live):\n # 是否实盘模式\n tdays = list(D.trading_days(market=trading_days_market, start_date=start_date, end_date=end_date)['date'])\n is_live_run = T.live_run_param('trading_date', None) is not None\n\n if is_live_run and train_update_days_for_live:\n train_update_days = train_update_days_for_live\n\n rollings = []\n train_end_date = train_data_min_days\n while train_end_date < len(tdays):\n if train_data_max_days is not None:\n train_start_date = max(train_end_date - train_data_max_days, 0)\n else:\n train_start_date = start_date\n rollings.append({\n 'train_start_date': tdays[train_start_date].strftime('%Y-%m-%d'),\n 'train_end_date': tdays[train_end_date - 1].strftime('%Y-%m-%d'),\n 'test_start_date': tdays[train_end_date].strftime('%Y-%m-%d'),\n 'test_end_date': tdays[min(train_end_date + train_update_days, len(tdays)) - 1].strftime('%Y-%m-%d'),\n })\n train_end_date += train_update_days\n\n if not rollings:\n raise Exception('没有滚动需要执行,请检查配置')\n\n if is_live_run and rolling_count_for_live:\n rollings = rollings[-rolling_count_for_live:]\n\n return rollings\n\n g = bq_graph\n\n rolling_dates = gen_rolling_dates(\n trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)\n\n # 训练和预测\n results = []\n for rolling in rolling_dates:\n parameters = {}\n # 先禁用回测\n parameters[trade_mid + '.__enabled__'] = False\n parameters[train_instruments_mid + '.start_date'] = rolling['train_start_date']\n parameters[train_instruments_mid + '.end_date'] = rolling['train_end_date']\n parameters[test_instruments_mid + '.start_date'] = rolling['test_start_date']\n parameters[test_instruments_mid + '.end_date'] = rolling['test_end_date']\n # print('------ rolling_train:', parameters)\n results.append(g.run(parameters))\n\n # 合并预测结果并回测\n mx = M.cached.v3(run=merge_datasources, input_1=[[result[predict_mid].predictions,result[test_instruments_mid].data.read_pickle()['start_date']] for result in results])\n parameters = {}\n parameters['*.__enabled__'] = False\n parameters[trade_mid + '.__enabled__'] = True\n parameters[trade_mid + '.instruments'] = mx.instrument_data\n parameters[trade_mid + '.options_data'] = mx.data\n\n trade = g.run(parameters)\n\n return {'rollings': results, 'trade': trade}\n","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-613"},{"name":"input_1","node_id":"-613"},{"name":"input_2","node_id":"-613"},{"name":"input_3","node_id":"-613"}],"output_ports":[{"name":"result","node_id":"-613"}],"cacheable":false,"seq_num":18,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='122,-62,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='810,-270,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-29' Position='364,96,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-35' Position='372,211,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='638,561,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1090,-73,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-70' Position='923,158,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-76' Position='873,291,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><node_position Node='-86' Position='1089,536,200,200'/><node_position Node='-326' Position='641,-68,200,200'/><node_position Node='-331' Position='450,289,200,200'/><node_position Node='-337' Position='1199,404,200,200'/><node_position Node='-459' Position='766,765,200,200'/><node_position Node='-613' Position='276,774,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [7]:
    # 本代码由可视化策略环境自动生成 2021年10月19日 11:29
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m17_handle_data_bigquant_run(context, data):
        
        #大盘风控模块,以上证指数5日涨幅为例,如果大盘下跌较多,全部卖出并结束当日操作
        today_date = data.current_dt.strftime('%Y-%m-%d')
        benckmarch_prices = data.history(context.symbols('000001.HIX'), ['close'], 5, '1d')['close']
        benckmarch_control = benckmarch_prices[context.symbol('000001.HIX')][-1] / benckmarch_prices[context.symbol('000001.SHA')][0]
        if benckmarch_control < 0.998:
            position_all = context.portfolio.positions.keys()
            for i in position_all:
                context.order_target(i, 0)
            print('日期',today_date,'大盘风控止损触发')
            return    
        #周期控制模块
        if context.trading_day_index%3!=0:#以3天换一次仓为例
            return
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()} 
    
        #---------------------------START:止赢止损模块(含建仓期)--------------------
        today_date = data.current_dt.strftime('%Y-%m-%d')
        positions_stop={e.symbol:p.cost_basis 
        for e,p in context.portfolio.positions.items()}
        # 新建当日止赢止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断
        current_stopwin_stock=[]
        current_stoploss_stock = []   
        if len(positions_stop)>0:
            for i in positions_stop.keys():
                stock_cost=positions_stop[i]  
                stock_market_price=data.current(context.symbol(i),'price')  
                # 赚3元且可以交易and not context.has_unfinished_sell_order(equities[i])
                if stock_market_price-stock_cost>=0.5 and data.can_trade(context.symbol(i)) and not context.has_unfinished_sell_order(i):
                    context.order_target_percent(context.symbol(i),0)      
                    current_stopwin_stock.append(i)
                    #print('日期:',today_date,'股票:',i,'出现止盈状况')
                print(today_date,'止盈股票列表',current_stopwin_stock)
                    # 亏1元就止损and not context.has_unfinished_sell_order(equities[i])
                if stock_market_price - stock_cost  <= -1 and data.can_trade(context.symbol(i)) and not context.has_unfinished_sell_order(i):   
                    context.order_target_percent(context.symbol(i),0)     
                    current_stoploss_stock.append(i)
                    #print('日期:',today_date,'股票:',i,'出现止损状况')
                print(today_date,'止损股票列表',current_stoploss_stock)
        #--------------------------END: 止赢止损模块-----------------------------
        
        #--------------------------START:持有固定天数卖出(不含建仓期)---------------
        current_stopdays_stock = [] 
        today = data.current_dt
        today_date = data.current_dt.strftime('%Y-%m-%d')
        # 不是建仓期(在前hold_days属于建仓期)
        if not is_staging:
            equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}
            if len(equities)>0:
                for i in equities:
                    sid = equities[i].sid  # 交易标的
                    # 今天和上次交易的时间相隔hold_days就全部卖出 datetime.timedelta(context.options['hold_days'])也可以换成自己需要的天数,比如datetime.timedelta(5)
                    if today-equities[i].last_sale_date>=datetime.timedelta(context.options['hold_days']) and data.can_trade(context.symbol(i)) and not context.has_unfinished_sell_order(equities[i]):
                        context.order_target_percent(sid, 0)
                        current_stopdays_stock.append(i)
                        #print('日期:',today_date,'持有固定天数卖出股票',str(i))
                print(today_date,'固定天数卖出列表',current_stopdays_stock)
        #-------------------------------END:持有固定天数卖出--------------------------
           
        
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
            # print('rank order for sell %s' % instruments)
            for instrument in instruments:
                if instrument  in current_stopwin_stock:
                    continue
                if instrument  in current_stoploss_stock:
                    continue
                if instrument  in current_stopdays_stock:
                    continue
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    # 回测引擎:准备数据,只执行一次
    def m17_prepare_bigquant_run(context):
        start_date = context.start_date
        end_date = context.end_date
        # 获取目前的行业列表
        industry = list(set(D.history_data(D.instruments(), end_date, end_date, ['industry_sw_level3']).industry_sw_level3))
        # 获取行业指数的行情数据
        industry = ['SW'+str(j)+'.SHA' for j in industry]
        data = D.history_data(industry, start_date, end_date, ['close','name'])
    
        # 获取股票名称 用于过滤st和退市股
        context.name_df = DataSource('instruments_CN_STOCK_A').read()
        # 获取涨跌停状态
        context.price_limit_status = DataSource('stock_status_CN_STOCK_A').read(fields=['price_limit_status'])
    
        
        # 计算此处每日动量较高的行业
        ret_data = data.groupby('instrument').apply(calcu_ret)
        ret_data.reset_index(inplace=True, drop=True)
        ret_data['date'] = ret_data['date'].map(lambda x:x.strftime('%Y-%m-%d'))
        context.daily_buy_industry = pd.Series({dt:seek_head_industry(ret_data.set_index('date').loc[dt]) for dt in list(set(ret_data.date))})
    
        # 每个交易日 每个行业的优质股 
        # 优质股的确定依据是:净资产收益率 (TTM)、营业收入同比增长率、归属母公司股东的净利润同比增长率
        features_data = D.features(D.instruments(start_date, end_date), start_date, end_date, ['fs_roe_ttm_0', 'fs_operating_revenue_yoy_0', 'fs_net_profit_yoy_0', 'industry_sw_level3_0'])
        # 整理出每个行业的优质股票
        context.daily_buy_stock = features_data.groupby(['date', 'industry_sw_level3_0']).apply(seek_head_stock)
    
    # 计算不同周期的动量
    def calcu_ret(df):
        df = df.sort_values('date')
        for i in [3, 9, 21, 42, 84, 126]: # 分别代表2月、4月、半年的动量
            df['ret_%s'%i] = df['close']/df['close'].shift(i)-1 
        return df
    
    # 计算出得分
    def seek_head_industry(df):
        for j in ['ret_3','ret_9','ret_21','ret_42','ret_84','ret_126']:
            df['%s'%j] = df['%s'%j].rank(ascending=True) 
        df['score'] =0.3*df['ret_3']+ 0.2*df['ret_9']+0.15*df['ret_21']+0.15*df['ret_42']+0.1*df['ret_84']+0.1*df['ret_126']  # 得分的权重分别为0.4、0.3、0.3
        result = df.sort_values('score', ascending=False)
        return list(result.instrument)[:5]  # 前3个行业
    
    # 选出特定行业优质股票
    def seek_head_stock(df):
        result = df.sort_values(['fs_roe_ttm_0', 'fs_net_profit_yoy_0', 'fs_operating_revenue_yoy_0'], ascending=False)
        return list(result.instrument[:10]) # 每个行业选10只股票
    # 回测引擎:初始化函数,只执行一次
    def m17_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.1
        context.options['hold_days'] = 1
    
        from zipline.finance.slippage import SlippageModel
        class FixedPriceSlippage(SlippageModel):
            def process_order(self, data, order, bar_volume=0, trigger_check_price=0):
                if order.limit is None:
                    price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell
                    price = data.current(order.asset, price_field)
                else:
                    price = data.current(order.asset, self._price_field_buy)
                # 返回希望成交的价格和数量
                return (price, order.amount)
        # 设置price_field,默认是开盘买入,收盘卖出
        context.fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='close')
        context.set_slippage(us_equities=context.fix_slippage)
    def m17_before_trading_start_bigquant_run(context, data):
        df_price_limit_status=context.price_limit_status.set_index('date')
        today=data.current_dt.strftime('%Y-%m-%d')
        # 得到当前未完成订单
        for orders in get_open_orders().values():
            # 循环,撤销订单
            for _order in orders:
                ins=str(_order.sid.symbol)
                if data.can_trade(_order.sid):
                    #判断一下如果当日涨停,则取消卖单
                    if  df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status.loc[today]>2 and _order.amount<0:
                        #cancel_order(_order)取消卖单
                        print(today,'尾盘涨停',ins) 
    
    g = T.Graph({
    
        'm1': 'M.instruments.v2',
        'm1.start_date': '2010-01-01',
        'm1.end_date': '2015-01-01',
        'm1.market': 'CN_STOCK_A',
        'm1.instrument_list': '',
        'm1.max_count': 0,
    
        'm2': 'M.advanced_auto_labeler.v2',
        'm2.instruments': T.Graph.OutputPort('m1.data'),
        'm2.label_expr': """# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -1) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)""",
        'm2.start_date': '',
        'm2.end_date': '',
        'm2.benchmark': '000300.SHA',
        'm2.drop_na_label': True,
        'm2.cast_label_int': True,
    
        'm3': 'M.input_features.v1',
        'm3.features': """avg_amount_4/amount_0
    avg_amount_9/amount_0
    """,
    
        'm14': 'M.input_features.v1',
        'm14.features_ds': T.Graph.OutputPort('m3.data'),
        'm14.features': """
    # #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    st_status_0
    list_board_0
    """,
    
        'm4': 'M.general_feature_extractor.v6',
        'm4.instruments': T.Graph.OutputPort('m1.data'),
        'm4.features': T.Graph.OutputPort('m14.data'),
        'm4.start_date': '',
        'm4.end_date': '',
        'm4.before_start_days': 0,
    
        'm5': 'M.derived_feature_extractor.v2',
        'm5.input_data': T.Graph.OutputPort('m4.data'),
        'm5.features': T.Graph.OutputPort('m14.data'),
        'm5.date_col': 'date',
        'm5.instrument_col': 'instrument',
    
        'm15': 'M.filter.v3',
        'm15.input_data': T.Graph.OutputPort('m5.data'),
        'm15.expr': 'st_status_0==0',
        'm15.output_left_data': False,
    
        'm7': 'M.join.v3',
        'm7.data1': T.Graph.OutputPort('m2.data'),
        'm7.data2': T.Graph.OutputPort('m15.data'),
        'm7.on': 'date,instrument',
        'm7.how': 'inner',
        'm7.sort': False,
    
        'm12': 'M.dropnan.v1',
        'm12.input_data': T.Graph.OutputPort('m7.data'),
    
        'm6': 'M.stock_ranker_train.v5',
        'm6.training_ds': T.Graph.OutputPort('m12.data'),
        'm6.features': T.Graph.OutputPort('m3.data'),
        'm6.learning_algorithm': '排序',
        'm6.number_of_leaves': 30,
        'm6.minimum_docs_per_leaf': 1000,
        'm6.number_of_trees': 20,
        'm6.learning_rate': 0.1,
        'm6.max_bins': 1023,
        'm6.feature_fraction': 1,
        'm6.m_lazy_run': False,
    
        'm9': 'M.instruments.v2',
        'm9.start_date': T.live_run_param('trading_date', '2017-01-01'),
        'm9.end_date': T.live_run_param('trading_date', '2017-3-31'),
        'm9.market': 'CN_STOCK_A',
        'm9.instrument_list': '',
        'm9.max_count': 0,
    
        'm10': 'M.general_feature_extractor.v6',
        'm10.instruments': T.Graph.OutputPort('m9.data'),
        'm10.features': T.Graph.OutputPort('m14.data'),
        'm10.start_date': '',
        'm10.end_date': '',
        'm10.before_start_days': 0,
    
        'm11': 'M.derived_feature_extractor.v2',
        'm11.input_data': T.Graph.OutputPort('m10.data'),
        'm11.features': T.Graph.OutputPort('m14.data'),
        'm11.date_col': 'date',
        'm11.instrument_col': 'instrument',
    
        'm16': 'M.filter.v3',
        'm16.input_data': T.Graph.OutputPort('m11.data'),
        'm16.expr': 'st_status_0==0',
        'm16.output_left_data': False,
    
        'm13': 'M.dropnan.v1',
        'm13.input_data': T.Graph.OutputPort('m16.data'),
    
        'm8': 'M.stock_ranker_predict.v5',
        'm8.model': T.Graph.OutputPort('m6.model'),
        'm8.data': T.Graph.OutputPort('m13.data'),
        'm8.m_lazy_run': False,
    
        'm17': 'M.trade.v3',
        'm17.instruments': T.Graph.OutputPort('m9.data'),
        'm17.options_data': T.Graph.OutputPort('m8.predictions'),
        'm17.start_date': '',
        'm17.end_date': '',
        'm17.handle_data': m17_handle_data_bigquant_run,
        'm17.prepare': m17_prepare_bigquant_run,
        'm17.initialize': m17_initialize_bigquant_run,
        'm17.before_trading_start': m17_before_trading_start_bigquant_run,
        'm17.volume_limit': 0.025,
        'm17.order_price_field_buy': 'open',
        'm17.order_price_field_sell': 'close',
        'm17.capital_base': 1000000,
        'm17.benchmark': '000300.SHA',
        'm17.auto_cancel_non_tradable_orders': True,
        'm17.data_frequency': 'daily',
        'm17.price_type': '后复权',
        'm17.plot_charts': True,
        'm17.backtest_only': False,
    })
    
    # g.run({})
    
    
    def m18_run_bigquant_run(
        bq_graph,
        inputs,
        trading_days_market='CN', # 使用那个市场的交易日历
        train_instruments_mid='m1', # 训练数据 证券代码列表 模块id
        test_instruments_mid='m9', # 测试数据 证券代码列表 模块id
        predict_mid='m8', # 预测 模块id
        trade_mid='m17', # 回测 模块id
        start_date='2021-08-30', # 数据开始日期
        end_date=T.live_run_param('trading_date', '2021-10-16'), # 数据结束日期
        train_update_days=6, # 更新周期,按交易日计算,每多少天更新一次
        train_update_days_for_live=6, #模拟实盘模式下的更新周期,按交易日计算,每多少天更新一次。如果需要在模拟实盘阶段使用不同的模型更新周期,可以设置这个参数
        train_data_min_days=21, # 最小数据天数,按交易日计算,所以第一个滚动的结束日期是 从开始日期到开始日期+最小数据天数
        train_data_max_days=21, # 最大数据天数,按交易日计算,0,表示没有限制,否则每一个滚动的开始日期=max(此滚动的结束日期-最大数据天数, 开始日期
        rolling_count_for_live=0, #实盘模式下滚动次数,模拟实盘模式下,取最后多少次滚动。一般在模拟实盘模式下,只用到最后一次滚动训练的模型,这里可以设置为1;如果你的滚动训练数据时间段很短,以至于期间可能没有训练数据,这里可以设置大一点。0表示没有限制
    ):
        def merge_datasources(input_1):
            df_list = [ds[0].read_df().set_index('date').loc[ds[1]:].reset_index() for ds in input_1]
            df = pd.concat(df_list)
            instrument_data = {
                'start_date': df['date'].min().strftime('%Y-%m-%d'),
                'end_date': df['date'].max().strftime('%Y-%m-%d'),
                'instruments': list(set(df['instrument'])),
            }
            return Outputs(data=DataSource.write_df(df), instrument_data=DataSource.write_pickle(instrument_data))
    
        def gen_rolling_dates(trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live):
            # 是否实盘模式
            tdays = list(D.trading_days(market=trading_days_market, start_date=start_date, end_date=end_date)['date'])
            is_live_run = T.live_run_param('trading_date', None) is not None
    
            if is_live_run and train_update_days_for_live:
                train_update_days = train_update_days_for_live
    
            rollings = []
            train_end_date = train_data_min_days
            while train_end_date < len(tdays):
                if train_data_max_days is not None:
                    train_start_date = max(train_end_date - train_data_max_days, 0)
                else:
                    train_start_date = start_date
                rollings.append({
                    'train_start_date': tdays[train_start_date].strftime('%Y-%m-%d'),
                    'train_end_date': tdays[train_end_date - 1].strftime('%Y-%m-%d'),
                    'test_start_date': tdays[train_end_date].strftime('%Y-%m-%d'),
                    'test_end_date': tdays[min(train_end_date + train_update_days, len(tdays)) - 1].strftime('%Y-%m-%d'),
                })
                train_end_date += train_update_days
    
            if not rollings:
                raise Exception('没有滚动需要执行,请检查配置')
    
            if is_live_run and rolling_count_for_live:
                rollings = rollings[-rolling_count_for_live:]
    
            return rollings
    
        g = bq_graph
    
        rolling_dates = gen_rolling_dates(
            trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)
    
        # 训练和预测
        results = []
        for rolling in rolling_dates:
            parameters = {}
            # 先禁用回测
            parameters[trade_mid + '.__enabled__'] = False
            parameters[train_instruments_mid + '.start_date'] = rolling['train_start_date']
            parameters[train_instruments_mid + '.end_date'] = rolling['train_end_date']
            parameters[test_instruments_mid + '.start_date'] = rolling['test_start_date']
            parameters[test_instruments_mid + '.end_date'] = rolling['test_end_date']
            # print('------ rolling_train:', parameters)
            results.append(g.run(parameters))
    
        # 合并预测结果并回测
        mx = M.cached.v3(run=merge_datasources, input_1=[[result[predict_mid].predictions,result[test_instruments_mid].data.read_pickle()['start_date']] for result in results])
        parameters = {}
        parameters['*.__enabled__'] = False
        parameters[trade_mid + '.__enabled__'] = True
        parameters[trade_mid + '.instruments'] = mx.instrument_data
        parameters[trade_mid + '.options_data'] = mx.data
    
        trade = g.run(parameters)
    
        return {'rollings': results, 'trade': trade}
    
    
    m18 = M.hyper_rolling_train.v1(
        run=m18_run_bigquant_run,
        run_now=True,
        bq_graph=g
    )
    
    设置测试数据集,查看训练迭代过程的NDCG
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-dda50b18a84e484eb535b070c0cd2fd7"}/bigcharts-data-end
    设置测试数据集,查看训练迭代过程的NDCG
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-9f7911352af54b229ed8bfe9a760b629"}/bigcharts-data-end
    ---------------------------------------------------------------------------
    KeyError                                  Traceback (most recent call last)
    KeyError: 'date'
    
    The above exception was the direct cause of the following exception:
    
    KeyError                                  Traceback (most recent call last)
    <ipython-input-7-11063bf63a4f> in <module>
        430 
        431 
    --> 432 m18 = M.hyper_rolling_train.v1(
        433     run=m18_run_bigquant_run,
        434     run_now=True,
    
    <ipython-input-7-11063bf63a4f> in m18_run_bigquant_run(bq_graph, inputs, trading_days_market, train_instruments_mid, test_instruments_mid, predict_mid, trade_mid, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)
        425     parameters[trade_mid + '.options_data'] = mx.data
        426 
    --> 427     trade = g.run(parameters)
        428 
        429     return {'rollings': results, 'trade': trade}
    
    <ipython-input-7-11063bf63a4f> in m17_prepare_bigquant_run(context)
        126     ret_data = data.groupby('instrument').apply(calcu_ret)
        127     ret_data.reset_index(inplace=True, drop=True)
    --> 128     ret_data['date'] = ret_data['date'].map(lambda x:x.strftime('%Y-%m-%d'))
        129     context.daily_buy_industry = pd.Series({dt:seek_head_industry(ret_data.set_index('date').loc[dt]) for dt in list(set(ret_data.date))})
        130 
    
    KeyError: 'date'