TabNet: Attentive Interpretable Tabular Learning
基于Tabnet模型的量化选股方案。抽取了98个量价因子,2010到2018年为数据训练TabNet模型,并将模型的预测结果应用在2018到2021年9月的数据上进行了回测。
TabNet核心参数
# 本代码由可视化策略环境自动生成 2021年10月15日 10:00
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m12_run_bigquant_run(input_1, input_2, input_3):
# 示例代码如下。在这里编写您的代码
from sklearn.model_selection import train_test_split
data = input_1.read()
x_train, x_val, y_train, y_val = train_test_split(data["x"], data['y'], random_state=2021)
data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train.reshape(-1, 1)})
data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val.reshape(-1, 1)})
return Outputs(data_1=data_1, data_2=data_2, data_3=None)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m12_post_run_bigquant_run(outputs):
return outputs
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m20_run_bigquant_run(input_1, input_2, input_3):
# 示例代码如下。在这里编写您的代码
pred_label = input_1.read_pickle()
df = input_2.read_df()
df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m20_post_run_bigquant_run(outputs):
return outputs
# 回测引擎:初始化函数,只执行一次
def m21_initialize_bigquant_run(context):
# 加载预测数据
context.ranker_prediction = context.options['data'].read_df()
# 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
context.set_commission(PerOrder(buy_cost=0.001, sell_cost=0.001, min_cost=5))
# 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
# 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
stock_count = 20
# 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
# 设置每只股票占用的最大资金比例
context.max_cash_per_instrument = 0.2
context.options['hold_days'] = 5
# 回测引擎:每日数据处理函数,每天执行一次
def m21_handle_data_bigquant_run(context, data):
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
# 1. 资金分配
# 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
# 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
positions = {e.symbol: p.amount * p.last_sale_price
for e, p in context.perf_tracker.position_tracker.positions.items()}
# 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
if not is_staging and cash_for_sell > 0:
equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
# print('rank order for sell %s' % instruments)
for instrument in instruments:
context.order_target(context.symbol(instrument), 0)
cash_for_sell -= positions[instrument]
if cash_for_sell <= 0:
break
# 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
buy_cash_weights = context.stock_weights
buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
for i, instrument in enumerate(buy_instruments):
cash = cash_for_buy * buy_cash_weights[i]
if cash > max_cash_per_instrument - positions.get(instrument, 0):
# 确保股票持仓量不会超过每次股票最大的占用资金量
cash = max_cash_per_instrument - positions.get(instrument, 0)
if cash > 0:
context.order_value(context.symbol(instrument), cash)
# 回测引擎:准备数据,只执行一次
def m21_prepare_bigquant_run(context):
pass
m1 = M.instruments.v2(
start_date='2010-01-01',
end_date='2017-12-31',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m2 = M.advanced_auto_labeler.v2(
instruments=m1.data,
label_expr="""# #号开始的表示注释
# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
# 添加benchmark_前缀,可使用对应的benchmark数据
# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
shift(close, -5) / shift(open, -1)-1
# 极值处理:用1%和99%分位的值做clip
clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
where(shift(high, -1) == shift(low, -1), NaN, label)
""",
start_date='',
end_date='',
benchmark='000300.SHA',
drop_na_label=True,
cast_label_int=False
)
m17 = M.standardlize.v8(
input_1=m2.data,
columns_input='label'
)
m3 = M.input_features.v1(
features="""close_0
open_0
high_0
low_0
amount_0
turn_0
return_0
close_1
open_1
high_1
low_1
return_1
amount_1
turn_1
close_2
open_2
high_2
low_2
amount_2
turn_2
return_2
close_3
open_3
high_3
low_3
amount_3
turn_3
return_3
close_4
open_4
high_4
low_4
amount_4
turn_4
return_4
mean(close_0, 5)
mean(low_0, 5)
mean(open_0, 5)
mean(high_0, 5)
mean(turn_0, 5)
mean(amount_0, 5)
mean(return_0, 5)
ts_max(close_0, 5)
ts_max(low_0, 5)
ts_max(open_0, 5)
ts_max(high_0, 5)
ts_max(turn_0, 5)
ts_max(amount_0, 5)
ts_max(return_0, 5)
ts_min(close_0, 5)
ts_min(low_0, 5)
ts_min(open_0, 5)
ts_min(high_0, 5)
ts_min(turn_0, 5)
ts_min(amount_0, 5)
ts_min(return_0, 5)
std(close_0, 5)
std(low_0, 5)
std(open_0, 5)
std(high_0, 5)
std(turn_0, 5)
std(amount_0, 5)
std(return_0, 5)
ts_rank(close_0, 5)
ts_rank(low_0, 5)
ts_rank(open_0, 5)
ts_rank(high_0, 5)
ts_rank(turn_0, 5)
ts_rank(amount_0, 5)
ts_rank(return_0, 5)
decay_linear(close_0, 5)
decay_linear(low_0, 5)
decay_linear(open_0, 5)
decay_linear(high_0, 5)
decay_linear(turn_0, 5)
decay_linear(amount_0, 5)
decay_linear(return_0, 5)
correlation(volume_0, return_0, 5)
correlation(volume_0, high_0, 5)
correlation(volume_0, low_0, 5)
correlation(volume_0, close_0, 5)
correlation(volume_0, open_0, 5)
correlation(volume_0, turn_0, 5)
correlation(return_0, high_0, 5)
correlation(return_0, low_0, 5)
correlation(return_0, close_0, 5)
correlation(return_0, open_0, 5)
correlation(return_0, turn_0, 5)
correlation(high_0, low_0, 5)
correlation(high_0, close_0, 5)
correlation(high_0, open_0, 5)
correlation(high_0, turn_0, 5)
correlation(low_0, close_0, 5)
correlation(low_0, open_0, 5)
correlation(low_0, turn_0, 5)
correlation(close_0, open_0, 5)
correlation(close_0, turn_0, 5)
correlation(open_0, turn_0, 5)"""
)
m6 = M.general_feature_extractor.v7(
instruments=m1.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=10
)
m7 = M.derived_feature_extractor.v3(
input_data=m6.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=True,
remove_extra_columns=False
)
m13 = M.standardlize.v8(
input_1=m7.data,
input_2=m3.data,
columns_input='[]'
)
m14 = M.fillnan.v1(
input_data=m13.data,
features=m3.data,
fill_value='0.0'
)
m4 = M.join.v3(
data1=m17.data,
data2=m14.data,
on='date,instrument',
how='inner',
sort=False
)
m10 = M.dl_convert_to_bin.v2(
input_data=m4.data,
features=m3.data,
window_size=1,
feature_clip=3,
flatten=True,
window_along_col='instrument'
)
m12 = M.cached.v3(
input_1=m10.data,
run=m12_run_bigquant_run,
post_run=m12_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m18 = M.dl_models_tabnet_train.v1(
training_data=m12.data_1,
validation_data=m12.data_2,
input_dim=98,
n_steps=3,
n_d=32,
n_a=32,
gamma=1.3,
momentum=0.02,
batch_size=5120,
virtual_batch_size=512,
epochs=100,
num_workers=4,
device_name='auto:自动调用GPU',
verbose='1:输出进度条记录'
)
m5 = M.instruments.v2(
start_date='2018-01-01',
end_date='2021-09-01',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m8 = M.general_feature_extractor.v7(
instruments=m5.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=10
)
m9 = M.derived_feature_extractor.v3(
input_data=m8.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=True,
remove_extra_columns=False
)
m16 = M.standardlize.v8(
input_1=m9.data,
input_2=m3.data,
columns_input='[]'
)
m15 = M.fillnan.v1(
input_data=m16.data,
features=m3.data,
fill_value='0.0'
)
m11 = M.dl_convert_to_bin.v2(
input_data=m15.data,
features=m3.data,
window_size=1,
feature_clip=3,
flatten=True,
window_along_col='instrument'
)
m19 = M.dl_models_tabnet_predict.v1(
trained_model=m18.data,
input_data=m11.data,
m_cached=False
)
m20 = M.cached.v3(
input_1=m19.data,
input_2=m9.data,
run=m20_run_bigquant_run,
post_run=m20_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m21 = M.trade.v4(
instruments=m5.data,
options_data=m20.data_1,
start_date='',
end_date='',
initialize=m21_initialize_bigquant_run,
handle_data=m21_handle_data_bigquant_run,
prepare=m21_prepare_bigquant_run,
volume_limit=0.025,
order_price_field_buy='open',
order_price_field_sell='close',
capital_base=1000000,
auto_cancel_non_tradable_orders=True,
data_frequency='daily',
price_type='后复权',
product_type='股票',
plot_charts=True,
backtest_only=False,
benchmark='000300.SHA'
)
m22 = M.strategy_turn_analysis.v1(
raw_perf=m21.raw_perf
)
[2021-10-14 15:40:15.637563] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-10-14 15:40:15.685807] INFO: moduleinvoker: 命中缓存
[2021-10-14 15:40:15.688248] INFO: moduleinvoker: instruments.v2 运行完成[0.05076s].
[2021-10-14 15:40:15.699753] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-10-14 15:40:15.714448] INFO: moduleinvoker: 命中缓存
[2021-10-14 15:40:15.722115] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.022336s].
[2021-10-14 15:40:15.761813] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-10-14 15:40:15.773758] INFO: moduleinvoker: 命中缓存
[2021-10-14 15:40:15.775744] INFO: moduleinvoker: standardlize.v8 运行完成[0.013934s].
[2021-10-14 15:40:15.781311] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-10-14 15:40:15.789284] INFO: moduleinvoker: 命中缓存
[2021-10-14 15:40:15.791540] INFO: moduleinvoker: input_features.v1 运行完成[0.010218s].
[2021-10-14 15:40:16.050540] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-10-14 15:40:17.067671] INFO: 基础特征抽取: 年份 2009, 特征行数=12795
[2021-10-14 15:40:19.950379] INFO: 基础特征抽取: 年份 2010, 特征行数=431567
[2021-10-14 15:40:23.798641] INFO: 基础特征抽取: 年份 2011, 特征行数=511455
[2021-10-14 15:40:27.796453] INFO: 基础特征抽取: 年份 2012, 特征行数=565675
[2021-10-14 15:40:31.973958] INFO: 基础特征抽取: 年份 2013, 特征行数=564168
[2021-10-14 15:40:36.509589] INFO: 基础特征抽取: 年份 2014, 特征行数=569948
[2021-10-14 15:40:43.585757] INFO: 基础特征抽取: 年份 2015, 特征行数=569698
[2021-10-14 15:40:54.300052] INFO: 基础特征抽取: 年份 2016, 特征行数=641546
[2021-10-14 15:41:18.980611] INFO: 基础特征抽取: 年份 2017, 特征行数=743233
[2021-10-14 15:41:19.197198] INFO: 基础特征抽取: 总行数: 4610085
[2021-10-14 15:41:19.205805] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[63.155279s].
[2021-10-14 15:41:19.222980] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-10-14 15:42:44.677082] INFO: derived_feature_extractor: 提取完成 mean(close_0, 5), 5.739s
[2021-10-14 15:42:49.410221] INFO: derived_feature_extractor: 提取完成 mean(low_0, 5), 4.731s
[2021-10-14 15:42:54.017308] INFO: derived_feature_extractor: 提取完成 mean(open_0, 5), 4.604s
[2021-10-14 15:42:58.471987] INFO: derived_feature_extractor: 提取完成 mean(high_0, 5), 4.452s
[2021-10-14 15:43:03.144687] INFO: derived_feature_extractor: 提取完成 mean(turn_0, 5), 4.670s
[2021-10-14 15:43:07.676221] INFO: derived_feature_extractor: 提取完成 mean(amount_0, 5), 4.529s
[2021-10-14 15:43:12.345608] INFO: derived_feature_extractor: 提取完成 mean(return_0, 5), 4.667s
[2021-10-14 15:43:17.185613] INFO: derived_feature_extractor: 提取完成 ts_max(close_0, 5), 4.838s
[2021-10-14 15:43:21.558949] INFO: derived_feature_extractor: 提取完成 ts_max(low_0, 5), 4.370s
[2021-10-14 15:43:26.478523] INFO: derived_feature_extractor: 提取完成 ts_max(open_0, 5), 4.918s
[2021-10-14 15:43:31.325087] INFO: derived_feature_extractor: 提取完成 ts_max(high_0, 5), 4.844s
[2021-10-14 15:43:36.209223] INFO: derived_feature_extractor: 提取完成 ts_max(turn_0, 5), 4.881s
[2021-10-14 15:43:41.355643] INFO: derived_feature_extractor: 提取完成 ts_max(amount_0, 5), 5.144s
[2021-10-14 15:43:45.776665] INFO: derived_feature_extractor: 提取完成 ts_max(return_0, 5), 4.419s
[2021-10-14 15:43:50.129144] INFO: derived_feature_extractor: 提取完成 ts_min(close_0, 5), 4.351s
[2021-10-14 15:43:54.813840] INFO: derived_feature_extractor: 提取完成 ts_min(low_0, 5), 4.681s
[2021-10-14 15:43:59.437535] INFO: derived_feature_extractor: 提取完成 ts_min(open_0, 5), 4.619s
[2021-10-14 15:44:04.670027] INFO: derived_feature_extractor: 提取完成 ts_min(high_0, 5), 5.229s
[2021-10-14 15:44:09.262356] INFO: derived_feature_extractor: 提取完成 ts_min(turn_0, 5), 4.589s
[2021-10-14 15:44:13.977654] INFO: derived_feature_extractor: 提取完成 ts_min(amount_0, 5), 4.713s
[2021-10-14 15:44:18.792624] INFO: derived_feature_extractor: 提取完成 ts_min(return_0, 5), 4.813s
[2021-10-14 15:44:23.632615] INFO: derived_feature_extractor: 提取完成 std(close_0, 5), 4.838s
[2021-10-14 15:44:28.304419] INFO: derived_feature_extractor: 提取完成 std(low_0, 5), 4.667s
[2021-10-14 15:44:33.523027] INFO: derived_feature_extractor: 提取完成 std(open_0, 5), 5.216s
[2021-10-14 15:44:38.453901] INFO: derived_feature_extractor: 提取完成 std(high_0, 5), 4.928s
[2021-10-14 15:44:42.960787] INFO: derived_feature_extractor: 提取完成 std(turn_0, 5), 4.504s
[2021-10-14 15:44:47.752792] INFO: derived_feature_extractor: 提取完成 std(amount_0, 5), 4.787s
[2021-10-14 15:44:52.488315] INFO: derived_feature_extractor: 提取完成 std(return_0, 5), 4.731s
[2021-10-14 15:45:12.964807] INFO: derived_feature_extractor: 提取完成 ts_rank(close_0, 5), 20.474s
[2021-10-14 15:45:33.789253] INFO: derived_feature_extractor: 提取完成 ts_rank(low_0, 5), 20.821s
[2021-10-14 15:45:54.031253] INFO: derived_feature_extractor: 提取完成 ts_rank(open_0, 5), 20.240s
[2021-10-14 15:46:13.368160] INFO: derived_feature_extractor: 提取完成 ts_rank(high_0, 5), 19.323s
[2021-10-14 15:46:32.615732] INFO: derived_feature_extractor: 提取完成 ts_rank(turn_0, 5), 19.245s
[2021-10-14 15:46:52.727078] INFO: derived_feature_extractor: 提取完成 ts_rank(amount_0, 5), 20.107s
[2021-10-14 15:47:14.024841] INFO: derived_feature_extractor: 提取完成 ts_rank(return_0, 5), 21.295s
[2021-10-14 15:47:26.096039] INFO: derived_feature_extractor: 提取完成 decay_linear(close_0, 5), 12.057s
[2021-10-14 15:47:38.273573] INFO: derived_feature_extractor: 提取完成 decay_linear(low_0, 5), 12.176s
[2021-10-14 15:48:01.593927] INFO: derived_feature_extractor: 提取完成 decay_linear(open_0, 5), 23.318s
[2021-10-14 15:48:22.081090] INFO: derived_feature_extractor: 提取完成 decay_linear(high_0, 5), 20.485s
[2021-10-14 15:48:44.987148] INFO: derived_feature_extractor: 提取完成 decay_linear(turn_0, 5), 22.904s
[2021-10-14 15:49:19.481827] INFO: derived_feature_extractor: 提取完成 decay_linear(amount_0, 5), 34.492s
[2021-10-14 15:49:39.247023] INFO: derived_feature_extractor: 提取完成 decay_linear(return_0, 5), 19.763s
[2021-10-14 15:50:16.896420] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, return_0, 5), 37.647s
[2021-10-14 15:50:51.942611] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, high_0, 5), 35.044s
[2021-10-14 15:51:26.509125] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, low_0, 5), 34.564s
[2021-10-14 15:52:02.001402] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, close_0, 5), 35.490s
[2021-10-14 15:52:34.944779] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, open_0, 5), 32.942s
[2021-10-14 15:53:20.489649] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, turn_0, 5), 45.541s
[2021-10-14 15:54:09.536632] INFO: derived_feature_extractor: 提取完成 correlation(return_0, high_0, 5), 49.044s
[2021-10-14 15:54:44.994225] INFO: derived_feature_extractor: 提取完成 correlation(return_0, low_0, 5), 35.454s
[2021-10-14 15:55:21.215282] INFO: derived_feature_extractor: 提取完成 correlation(return_0, close_0, 5), 36.219s
[2021-10-14 15:55:56.940604] INFO: derived_feature_extractor: 提取完成 correlation(return_0, open_0, 5), 35.720s
[2021-10-14 15:56:31.884125] INFO: derived_feature_extractor: 提取完成 correlation(return_0, turn_0, 5), 34.941s
[2021-10-14 15:57:08.160069] INFO: derived_feature_extractor: 提取完成 correlation(high_0, low_0, 5), 36.273s
[2021-10-14 15:57:44.663070] INFO: derived_feature_extractor: 提取完成 correlation(high_0, close_0, 5), 36.497s
[2021-10-14 15:58:19.848537] INFO: derived_feature_extractor: 提取完成 correlation(high_0, open_0, 5), 35.184s
[2021-10-14 15:58:54.106971] INFO: derived_feature_extractor: 提取完成 correlation(high_0, turn_0, 5), 34.255s
[2021-10-14 15:59:30.266638] INFO: derived_feature_extractor: 提取完成 correlation(low_0, close_0, 5), 36.157s
[2021-10-14 16:00:06.991163] INFO: derived_feature_extractor: 提取完成 correlation(low_0, open_0, 5), 36.722s
[2021-10-14 16:00:39.088655] INFO: derived_feature_extractor: 提取完成 correlation(low_0, turn_0, 5), 32.094s
[2021-10-14 16:01:10.100893] INFO: derived_feature_extractor: 提取完成 correlation(close_0, open_0, 5), 31.010s
[2021-10-14 16:01:42.023592] INFO: derived_feature_extractor: 提取完成 correlation(close_0, turn_0, 5), 31.920s
[2021-10-14 16:02:13.092759] INFO: derived_feature_extractor: 提取完成 correlation(open_0, turn_0, 5), 31.067s
[2021-10-14 16:02:20.740519] INFO: derived_feature_extractor: /y_2009, 12795
[2021-10-14 16:02:21.912153] INFO: derived_feature_extractor: /y_2010, 431567
[2021-10-14 16:02:25.604353] INFO: derived_feature_extractor: /y_2011, 511455
[2021-10-14 16:02:30.206158] INFO: derived_feature_extractor: /y_2012, 565675
[2021-10-14 16:02:35.238231] INFO: derived_feature_extractor: /y_2013, 564168
[2021-10-14 16:02:40.516610] INFO: derived_feature_extractor: /y_2014, 569948
[2021-10-14 16:02:45.441433] INFO: derived_feature_extractor: /y_2015, 569698
[2021-10-14 16:02:50.601801] INFO: derived_feature_extractor: /y_2016, 641546
[2021-10-14 16:02:56.111231] INFO: derived_feature_extractor: /y_2017, 743233
[2021-10-14 16:03:12.286368] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[1313.063387s].
[2021-10-14 16:03:12.292740] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-10-14 16:14:39.906640] INFO: moduleinvoker: standardlize.v8 运行完成[687.613897s].
[2021-10-14 16:14:39.922344] INFO: moduleinvoker: fillnan.v1 开始运行..
[2021-10-14 16:15:39.584804] INFO: moduleinvoker: fillnan.v1 运行完成[59.662462s].
[2021-10-14 16:15:39.598743] INFO: moduleinvoker: join.v3 开始运行..
[2021-10-14 16:18:11.862707] INFO: join: /data, 行数=4551595/4593884, 耗时=132.928983s
[2021-10-14 16:18:12.069616] INFO: join: 最终行数: 4551595
[2021-10-14 16:18:12.260268] INFO: moduleinvoker: join.v3 运行完成[152.66148s].
[2021-10-14 16:18:12.302571] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-10-14 16:18:47.139163] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[34.836605s].
[2021-10-14 16:18:47.164111] INFO: moduleinvoker: cached.v3 开始运行..
[2021-10-14 16:19:06.861556] INFO: moduleinvoker: cached.v3 运行完成[19.697444s].
[2021-10-14 16:19:06.875803] INFO: moduleinvoker: dl_models_tabnet_train.v1 开始运行..
[2021-10-14 16:19:23.998920] INFO: dl_models_tabnet_train: 准备训练,训练样本个数:3413696,迭代次数:100
[2021-10-14 19:15:18.439122] INFO: moduleinvoker: dl_models_tabnet_train.v1 运行完成[10571.563264s].
[2021-10-14 19:15:18.457460] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-10-14 19:15:18.469179] INFO: moduleinvoker: 命中缓存
[2021-10-14 19:15:18.471711] INFO: moduleinvoker: instruments.v2 运行完成[0.014258s].
[2021-10-14 19:15:18.578618] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-10-14 19:15:21.551567] INFO: 基础特征抽取: 年份 2017, 特征行数=19477
[2021-10-14 19:15:29.288373] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2021-10-14 19:15:36.074857] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2021-10-14 19:15:43.989513] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2021-10-14 19:15:50.115584] INFO: 基础特征抽取: 年份 2021, 特征行数=697141
[2021-10-14 19:15:50.192895] INFO: 基础特征抽取: 总行数: 3364433
[2021-10-14 19:15:50.205184] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[31.62659s].
[2021-10-14 19:15:50.214327] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-10-14 19:16:05.900612] INFO: derived_feature_extractor: 提取完成 mean(close_0, 5), 3.275s
[2021-10-14 19:16:09.230865] INFO: derived_feature_extractor: 提取完成 mean(low_0, 5), 3.328s
[2021-10-14 19:16:12.872419] INFO: derived_feature_extractor: 提取完成 mean(open_0, 5), 3.639s
[2021-10-14 19:16:16.207443] INFO: derived_feature_extractor: 提取完成 mean(high_0, 5), 3.333s
[2021-10-14 19:16:19.572464] INFO: derived_feature_extractor: 提取完成 mean(turn_0, 5), 3.363s
[2021-10-14 19:16:22.923951] INFO: derived_feature_extractor: 提取完成 mean(amount_0, 5), 3.349s
[2021-10-14 19:16:26.126866] INFO: derived_feature_extractor: 提取完成 mean(return_0, 5), 3.200s
[2021-10-14 19:16:29.609656] INFO: derived_feature_extractor: 提取完成 ts_max(close_0, 5), 3.481s
[2021-10-14 19:16:33.072680] INFO: derived_feature_extractor: 提取完成 ts_max(low_0, 5), 3.461s
[2021-10-14 19:16:36.534564] INFO: derived_feature_extractor: 提取完成 ts_max(open_0, 5), 3.454s
[2021-10-14 19:16:40.123193] INFO: derived_feature_extractor: 提取完成 ts_max(high_0, 5), 3.585s
[2021-10-14 19:16:43.547079] INFO: derived_feature_extractor: 提取完成 ts_max(turn_0, 5), 3.419s
[2021-10-14 19:16:46.992285] INFO: derived_feature_extractor: 提取完成 ts_max(amount_0, 5), 3.441s
[2021-10-14 19:16:50.430936] INFO: derived_feature_extractor: 提取完成 ts_max(return_0, 5), 3.436s
[2021-10-14 19:16:53.950606] INFO: derived_feature_extractor: 提取完成 ts_min(close_0, 5), 3.517s
[2021-10-14 19:16:57.344212] INFO: derived_feature_extractor: 提取完成 ts_min(low_0, 5), 3.391s
[2021-10-14 19:17:00.828106] INFO: derived_feature_extractor: 提取完成 ts_min(open_0, 5), 3.479s
[2021-10-14 19:17:03.965544] INFO: derived_feature_extractor: 提取完成 ts_min(high_0, 5), 3.135s
[2021-10-14 19:17:07.466009] INFO: derived_feature_extractor: 提取完成 ts_min(turn_0, 5), 3.498s
[2021-10-14 19:17:10.863044] INFO: derived_feature_extractor: 提取完成 ts_min(amount_0, 5), 3.395s
[2021-10-14 19:17:14.120994] INFO: derived_feature_extractor: 提取完成 ts_min(return_0, 5), 3.255s
[2021-10-14 19:17:17.568315] INFO: derived_feature_extractor: 提取完成 std(close_0, 5), 3.445s
[2021-10-14 19:17:20.509931] INFO: derived_feature_extractor: 提取完成 std(low_0, 5), 2.940s
[2021-10-14 19:17:23.634726] INFO: derived_feature_extractor: 提取完成 std(open_0, 5), 3.123s
[2021-10-14 19:17:26.710814] INFO: derived_feature_extractor: 提取完成 std(high_0, 5), 3.073s
[2021-10-14 19:17:30.147815] INFO: derived_feature_extractor: 提取完成 std(turn_0, 5), 3.435s
[2021-10-14 19:17:33.449949] INFO: derived_feature_extractor: 提取完成 std(amount_0, 5), 3.300s
[2021-10-14 19:17:36.716136] INFO: derived_feature_extractor: 提取完成 std(return_0, 5), 3.263s
[2021-10-14 19:17:52.016046] INFO: derived_feature_extractor: 提取完成 ts_rank(close_0, 5), 15.297s
[2021-10-14 19:18:07.046142] INFO: derived_feature_extractor: 提取完成 ts_rank(low_0, 5), 15.027s
[2021-10-14 19:18:21.157383] INFO: derived_feature_extractor: 提取完成 ts_rank(open_0, 5), 14.108s
[2021-10-14 19:18:33.465978] INFO: derived_feature_extractor: 提取完成 ts_rank(high_0, 5), 12.306s
[2021-10-14 19:18:47.528582] INFO: derived_feature_extractor: 提取完成 ts_rank(turn_0, 5), 14.061s
[2021-10-14 19:19:01.859558] INFO: derived_feature_extractor: 提取完成 ts_rank(amount_0, 5), 14.327s
[2021-10-14 19:19:18.074382] INFO: derived_feature_extractor: 提取完成 ts_rank(return_0, 5), 16.213s
[2021-10-14 19:19:28.303294] INFO: derived_feature_extractor: 提取完成 decay_linear(close_0, 5), 10.226s
[2021-10-14 19:19:38.901729] INFO: derived_feature_extractor: 提取完成 decay_linear(low_0, 5), 10.596s
[2021-10-14 19:19:49.978572] INFO: derived_feature_extractor: 提取完成 decay_linear(open_0, 5), 11.075s
[2021-10-14 19:20:01.967298] INFO: derived_feature_extractor: 提取完成 decay_linear(high_0, 5), 11.987s
[2021-10-14 19:20:13.742572] INFO: derived_feature_extractor: 提取完成 decay_linear(turn_0, 5), 11.771s
[2021-10-14 19:20:25.097048] INFO: derived_feature_extractor: 提取完成 decay_linear(amount_0, 5), 11.352s
[2021-10-14 19:20:39.850160] INFO: derived_feature_extractor: 提取完成 decay_linear(return_0, 5), 14.740s
[2021-10-14 19:21:46.234545] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, return_0, 5), 66.382s
[2021-10-14 19:22:44.975941] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, high_0, 5), 58.727s
[2021-10-14 19:23:47.473425] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, low_0, 5), 62.476s
[2021-10-14 19:24:46.884321] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, close_0, 5), 59.386s
[2021-10-14 19:25:38.781388] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, open_0, 5), 51.893s
[2021-10-14 19:26:29.628612] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, turn_0, 5), 50.829s
[2021-10-14 19:27:21.148628] INFO: derived_feature_extractor: 提取完成 correlation(return_0, high_0, 5), 51.516s
[2021-10-14 19:28:08.830293] INFO: derived_feature_extractor: 提取完成 correlation(return_0, low_0, 5), 47.680s
[2021-10-14 19:29:01.204418] INFO: derived_feature_extractor: 提取完成 correlation(return_0, close_0, 5), 52.369s
[2021-10-14 19:29:56.191806] INFO: derived_feature_extractor: 提取完成 correlation(return_0, open_0, 5), 54.985s
[2021-10-14 19:30:44.581436] INFO: derived_feature_extractor: 提取完成 correlation(return_0, turn_0, 5), 48.387s
[2021-10-14 19:31:22.360047] INFO: derived_feature_extractor: 提取完成 correlation(high_0, low_0, 5), 37.777s
[2021-10-14 19:32:00.813459] INFO: derived_feature_extractor: 提取完成 correlation(high_0, close_0, 5), 38.452s
[2021-10-14 19:32:36.742876] INFO: derived_feature_extractor: 提取完成 correlation(high_0, open_0, 5), 35.926s
[2021-10-14 19:33:12.892381] INFO: derived_feature_extractor: 提取完成 correlation(high_0, turn_0, 5), 36.147s
[2021-10-14 19:33:49.153519] INFO: derived_feature_extractor: 提取完成 correlation(low_0, close_0, 5), 36.259s
[2021-10-14 19:34:26.189372] INFO: derived_feature_extractor: 提取完成 correlation(low_0, open_0, 5), 37.033s
[2021-10-14 19:35:02.969118] INFO: derived_feature_extractor: 提取完成 correlation(low_0, turn_0, 5), 36.778s
[2021-10-14 19:35:35.854317] INFO: derived_feature_extractor: 提取完成 correlation(close_0, open_0, 5), 32.883s
[2021-10-14 19:36:10.575084] INFO: derived_feature_extractor: 提取完成 correlation(close_0, turn_0, 5), 34.719s
[2021-10-14 19:36:46.273160] INFO: derived_feature_extractor: 提取完成 correlation(open_0, turn_0, 5), 35.696s
[2021-10-14 19:36:49.902716] INFO: derived_feature_extractor: /y_2017, 19477
[2021-10-14 19:36:52.340282] INFO: derived_feature_extractor: /y_2018, 816987
[2021-10-14 19:37:01.357387] INFO: derived_feature_extractor: /y_2019, 884867
[2021-10-14 19:37:11.083924] INFO: derived_feature_extractor: /y_2020, 945961
[2021-10-14 19:37:19.841678] INFO: derived_feature_extractor: /y_2021, 697141
[2021-10-14 19:37:25.047181] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[1294.832837s].
[2021-10-14 19:37:25.058602] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-10-14 19:44:16.460815] INFO: moduleinvoker: standardlize.v8 运行完成[411.402189s].
[2021-10-14 19:44:16.472986] INFO: moduleinvoker: fillnan.v1 开始运行..
[2021-10-14 19:45:31.168904] INFO: moduleinvoker: fillnan.v1 运行完成[74.695912s].
[2021-10-14 19:45:31.193584] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-10-14 19:46:15.459206] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[44.265639s].
[2021-10-14 19:46:15.487870] INFO: moduleinvoker: dl_models_tabnet_predict.v1 开始运行..
[2021-10-14 19:46:19.796477] INFO: dl_models_tabnet_pred: 模型预测,样本个数:3344550
[2021-10-14 19:47:31.330903] INFO: moduleinvoker: dl_models_tabnet_predict.v1 运行完成[75.842998s].
[2021-10-14 19:47:31.355604] INFO: moduleinvoker: cached.v3 开始运行..
[2021-10-14 19:48:02.036325] INFO: moduleinvoker: cached.v3 运行完成[30.680723s].
[2021-10-14 19:48:04.135633] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-10-14 19:48:04.141961] INFO: backtest: biglearning backtest:V8.5.0
[2021-10-14 19:48:04.144286] INFO: backtest: product_type:stock by specified
[2021-10-14 19:48:04.287152] INFO: moduleinvoker: cached.v2 开始运行..
[2021-10-14 19:48:17.114180] INFO: backtest: 读取股票行情完成:4543828
[2021-10-14 19:48:25.896166] INFO: moduleinvoker: cached.v2 运行完成[21.609009s].
[2021-10-14 19:48:30.898893] INFO: algo: TradingAlgorithm V1.8.5
[2021-10-14 19:48:33.070466] INFO: algo: trading transform...
[2021-10-14 19:49:58.373551] INFO: Performance: Simulated 893 trading days out of 893.
[2021-10-14 19:49:58.375676] INFO: Performance: first open: 2018-01-02 09:30:00+00:00
[2021-10-14 19:49:58.377400] INFO: Performance: last close: 2021-09-01 15:00:00+00:00
[2021-10-14 19:50:17.172247] INFO: moduleinvoker: backtest.v8 运行完成[133.036621s].
[2021-10-14 19:50:17.174178] INFO: moduleinvoker: trade.v4 运行完成[135.09446s].
[2021-10-14 19:50:17.194917] INFO: moduleinvoker: strategy_turn_analysis.v1 开始运行..
[2021-10-14 19:50:23.358875] INFO: moduleinvoker: strategy_turn_analysis.v1 运行完成[6.163942s].
# 输出predict
predict_df = m20.data_1.read()
predict_df.head()
predict_df.to_csv("tabnet_predict.csv")