{"description":"实验创建于1/13/2021","graph":{"edges":[{"to_node_id":"-18:instruments","from_node_id":"-5:data"},{"to_node_id":"-79:instruments","from_node_id":"-5:data"},{"to_node_id":"-18:features","from_node_id":"-13:data"},{"to_node_id":"-25:features","from_node_id":"-13:data"},{"to_node_id":"-25:input_data","from_node_id":"-18:data"},{"to_node_id":"-494:data1","from_node_id":"-25:data"},{"to_node_id":"-66:input_1","from_node_id":"-58:sorted_data"},{"to_node_id":"-41:input_data","from_node_id":"-115:data"},{"to_node_id":"-58:input_ds","from_node_id":"-41:data"},{"to_node_id":"-1390:input_ds","from_node_id":"-79:data"},{"to_node_id":"-494:data2","from_node_id":"-1390:data"},{"to_node_id":"-115:input_data","from_node_id":"-494:data"}],"nodes":[{"node_id":"-5","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-05-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-05-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-5"}],"output_ports":[{"name":"data","node_id":"-5"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-13","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\ncode=industry_sw_level1_0.astype('str')\n# 同时按日期和key做分组,求平均\npjzf=group_mean(industry_sw_level1_0, return_0)\npjzf20=mean(pjzf,20)\n\n# 同时按日期和key做分组,求和\n# group_sum(industry_level1_0, return_0)\n\n# 同时按日期和key做分组,求当前值在分组内的排名百分比\nhypm=group_rank(industry_sw_level3_0,return_0)\n#","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-13"}],"output_ports":[{"name":"data","node_id":"-13"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-18","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-18"},{"name":"features","node_id":"-18"}],"output_ports":[{"name":"data","node_id":"-18"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-25","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-25"},{"name":"features","node_id":"-25"}],"output_ports":[{"name":"data","node_id":"-25"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-58","module_id":"BigQuantSpace.sort.sort-v5","parameters":[{"name":"sort_by","value":"pjzf","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-58"},{"name":"sort_by_ds","node_id":"-58"}],"output_ports":[{"name":"sorted_data","node_id":"-58"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-115","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-115"},{"name":"features","node_id":"-115"}],"output_ports":[{"name":"data","node_id":"-115"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-41","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"date=='2022-05-17'","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-41"}],"output_ports":[{"name":"data","node_id":"-41"},{"name":"left_data","node_id":"-41"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-79","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"basic_info_IndustrySw","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-79"},{"name":"features","node_id":"-79"}],"output_ports":[{"name":"data","node_id":"-79"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-1390","module_id":"BigQuantSpace.select_columns.select_columns-v3","parameters":[{"name":"columns","value":"code,name","type":"Literal","bound_global_parameter":null},{"name":"reverse_select","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-1390"},{"name":"columns_ds","node_id":"-1390"}],"output_ports":[{"name":"data","node_id":"-1390"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-494","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"code","type":"Literal","bound_global_parameter":null},{"name":"how","value":"left","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-494"},{"name":"data2","node_id":"-494"}],"output_ports":[{"name":"data","node_id":"-494"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-66","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read()\n df = df.groupby(['date','industry_sw_level1_0']).sum()\n data_1 = DataSource.write_df(df)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-66"},{"name":"input_2","node_id":"-66"},{"name":"input_3","node_id":"-66"}],"output_ports":[{"name":"data_1","node_id":"-66"},{"name":"data_2","node_id":"-66"},{"name":"data_3","node_id":"-66"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-5' Position='303,187,200,200'/><node_position Node='-13' Position='642,185,200,200'/><node_position Node='-18' Position='479,296,200,200'/><node_position Node='-25' Position='481,399,200,200'/><node_position Node='-58' Position='533,975,200,200'/><node_position Node='-115' Position='492,592,200,200'/><node_position Node='-41' Position='520,827,200,200'/><node_position Node='-79' Position='180,482,200,200'/><node_position Node='-1390' Position='73,590,200,200'/><node_position Node='-494' Position='248,706,200,200'/><node_position Node='-66' Position='145.03172302246094,1026.369140625,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-06-28 15:00:30.033497] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-06-28 15:00:30.043196] INFO: moduleinvoker: 命中缓存
[2022-06-28 15:00:30.045917] INFO: moduleinvoker: instruments.v2 运行完成[0.012413s].
[2022-06-28 15:00:30.057656] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2022-06-28 15:00:30.076087] INFO: moduleinvoker: 命中缓存
[2022-06-28 15:00:30.081283] INFO: moduleinvoker: use_datasource.v1 运行完成[0.023638s].
[2022-06-28 15:00:30.115715] INFO: moduleinvoker: select_columns.v3 开始运行..
[2022-06-28 15:00:30.124138] INFO: moduleinvoker: 命中缓存
[2022-06-28 15:00:30.126512] INFO: moduleinvoker: select_columns.v3 运行完成[0.010813s].
[2022-06-28 15:00:30.136717] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-06-28 15:00:30.145994] INFO: moduleinvoker: 命中缓存
[2022-06-28 15:00:30.148233] INFO: moduleinvoker: input_features.v1 运行完成[0.011536s].
[2022-06-28 15:00:30.195639] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-06-28 15:00:30.206154] INFO: moduleinvoker: 命中缓存
[2022-06-28 15:00:30.212316] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.016699s].
[2022-06-28 15:00:30.224607] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-06-28 15:00:30.232135] INFO: moduleinvoker: 命中缓存
[2022-06-28 15:00:30.234742] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010139s].
[2022-06-28 15:00:30.275512] INFO: moduleinvoker: join.v3 开始运行..
[2022-06-28 15:00:30.286225] INFO: moduleinvoker: 命中缓存
[2022-06-28 15:00:30.291886] INFO: moduleinvoker: join.v3 运行完成[0.016382s].
[2022-06-28 15:00:30.325598] INFO: moduleinvoker: dropnan.v2 开始运行..
[2022-06-28 15:00:30.338123] INFO: moduleinvoker: 命中缓存
[2022-06-28 15:00:30.346364] INFO: moduleinvoker: dropnan.v2 运行完成[0.020754s].
[2022-06-28 15:00:30.421406] INFO: moduleinvoker: filter.v3 开始运行..
[2022-06-28 15:00:30.431163] INFO: moduleinvoker: 命中缓存
[2022-06-28 15:00:30.436088] INFO: moduleinvoker: filter.v3 运行完成[0.01468s].
[2022-06-28 15:00:30.501796] INFO: moduleinvoker: sort.v5 开始运行..
[2022-06-28 15:00:30.525354] INFO: moduleinvoker: 命中缓存
[2022-06-28 15:00:30.529320] INFO: moduleinvoker: sort.v5 运行完成[0.027523s].
[2022-06-28 15:00:30.621037] INFO: moduleinvoker: cached.v3 开始运行..
[2022-06-28 15:00:30.908461] INFO: moduleinvoker: cached.v3 运行完成[0.287427s].