克隆策略

    {"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-215:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-3498:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-3270:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-215:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-222:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-231:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-238:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-2702:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"DestinationInputPortId":"-231:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-250:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-7350:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-7326:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-172:input_1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-6923:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"DestinationInputPortId":"-7367:data2","SourceOutputPortId":"-86:data"},{"DestinationInputPortId":"-222:input_data","SourceOutputPortId":"-215:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-222:data"},{"DestinationInputPortId":"-238:input_data","SourceOutputPortId":"-231:data"},{"DestinationInputPortId":"-86:input_data","SourceOutputPortId":"-238:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","SourceOutputPortId":"-766:model"},{"DestinationInputPortId":"-3270:features","SourceOutputPortId":"-2116:data"},{"DestinationInputPortId":"-3505:data2","SourceOutputPortId":"-3270:data"},{"DestinationInputPortId":"-3466:features","SourceOutputPortId":"-3276:data"},{"DestinationInputPortId":"-766:features","SourceOutputPortId":"-3276:data"},{"DestinationInputPortId":"-3726:input_data","SourceOutputPortId":"-3466:data"},{"DestinationInputPortId":"-3498:features","SourceOutputPortId":"-3493:data"},{"DestinationInputPortId":"-3505:data1","SourceOutputPortId":"-3498:data"},{"DestinationInputPortId":"-3466:input_data","SourceOutputPortId":"-3505:data"},{"DestinationInputPortId":"-6923:data2","SourceOutputPortId":"-3726:data"},{"DestinationInputPortId":"-9960:input_data","SourceOutputPortId":"-6923:data"},{"DestinationInputPortId":"-7326:features","SourceOutputPortId":"-7321:data"},{"DestinationInputPortId":"-7357:data2","SourceOutputPortId":"-7326:data"},{"DestinationInputPortId":"-7337:features","SourceOutputPortId":"-7332:data"},{"DestinationInputPortId":"-7363:input_data","SourceOutputPortId":"-7337:data"},{"DestinationInputPortId":"-7350:features","SourceOutputPortId":"-7345:data"},{"DestinationInputPortId":"-7357:data1","SourceOutputPortId":"-7350:data"},{"DestinationInputPortId":"-7337:input_data","SourceOutputPortId":"-7357:data"},{"DestinationInputPortId":"-7367:data1","SourceOutputPortId":"-7363:data"},{"DestinationInputPortId":"-12320:input_data","SourceOutputPortId":"-7367:data"},{"DestinationInputPortId":"-11908:input_data","SourceOutputPortId":"-9960:data"},{"DestinationInputPortId":"-766:training_ds","SourceOutputPortId":"-11908:data"},{"DestinationInputPortId":"-12325:input_data","SourceOutputPortId":"-12320:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","SourceOutputPortId":"-12325:data"},{"DestinationInputPortId":"-172:input_2","SourceOutputPortId":"-170:data"},{"DestinationInputPortId":"-2702:data2","SourceOutputPortId":"-172:data_1"},{"DestinationInputPortId":"-2709:input_ds","SourceOutputPortId":"-2702:data"},{"DestinationInputPortId":"-250:options_data","SourceOutputPortId":"-2709:sorted_data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2019-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"close_0\nhigh_1\nopen_0\nlow_0\nst_status_0\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2019-10-26","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2020-03-11","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-86","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-86"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-86","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-215","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-215"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-215"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-215","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-222","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-222"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-222"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-222","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-231","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-231"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-231"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-231","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-238","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-250","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n #context.stock_weights = (1,0)\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.options['hold_days'] = 1\n #用于判断奇偶交易\n context.datecont = 0\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n if context.datecont == 0:\n context.datecont = 1\n else:\n context.datecont = 0\n \n positions = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n \n #大盘风控模块,读取风控数据\n today = data.current_dt.strftime('%Y-%m-%d')\n \n #----------------大盘风控模块,读取风控数据------------------\n risk = 0\n today = data.current_dt.strftime('%Y-%m-%d')\n bm_ret0=ranker_prediction.bm_ret0.values[0]\n bm_ret1=ranker_prediction.bm_ret1.values[0]\n bm_ret2=ranker_prediction.bm_ret2.values[0]\n bm_ret3=ranker_prediction.bm_ret3.values[0]\n bm_risk_v0=ranker_prediction.bm_risk_v0.values[0]\n bm_risk_v1=ranker_prediction.bm_risk_v1.values[0]\n bm_risk_v2=ranker_prediction.bm_risk_v2.values[0]\n \n if bm_ret0 < 0.001:\n if bm_risk_v0 > 0:\n print(today,'大盘放量下跌,全仓卖出')\n risk = 1\n elif bm_ret1 < 0.001 and bm_ret2 < 0.002:\n print(today,'大盘连续下跌,全仓卖出')\n risk = 1\n if bm_ret3 < -0.02:\n print(today,'大盘三日下跌超过2%,全仓卖出')\n risk = 1\n if bm_ret0 > 0.01:\n if (bm_risk_v0 + bm_risk_v1) < 0:\n print(today,'大盘缩量上涨,全仓卖出')\n risk = 1\n \n if risk == 1:\n \n if len(positions)>0:\n # 全部卖出后返回\n for instrument in positions:\n if data.can_trade(context.symbol(instrument)):\n context.order_target_percent(context.symbol(instrument), 0)\n return # 风控卖出后直接使用return结束当日交易,后续轮仓逻辑不再执行\n #---------------------大盘风控结束--------------------------------------\n \n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n \n #------------------------------------------卖出模块START--------------------------------------------\n if len(positions) > 0:\n for instrument in positions.keys():\n last_sale_date = positions[instrument].last_sale_date #上次交易日期\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days #持仓天数\n if hold_days >= 0:\n context.order_target(context.symbol(instrument), 0)\n #-------------------------------------------卖出模块END---------------------------------------------\n \n \n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n\n for i, instrument in enumerate(buy_instruments):\n try:\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if context.datecont == 1:\n # 获取今天和昨天的成交量\n volume_since_buy = data.history(context.symbol(instrument), 'volume', 3, '1d')\n close_price = data.current(context.symbol(instrument), 'close') #当收盘价\n high_price = data.current(context.symbol(instrument), 'high') #当天最高价\n if ((volume_since_buy[2]/volume_since_buy[1] < 2.5) or (high_price/close_price<1.05)) and volume_since_buy[2]/volume_since_buy[0] > 1:\n current_price = data.current(context.symbol(instrument), 'price')\n amount = math.floor(cash / current_price - cash / current_price % 100)\n context.order(context.symbol(instrument), amount)\n return\n else:\n print('today = ',today,'instrument = ',instrument)\n except:\n print('today = ',today,'instrument = ',instrument)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":"100000","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-250"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-250","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-766","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-766"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-766"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-766"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-766"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-766","OutputType":null},{"Name":"feature_gains","NodeId":"-766","OutputType":null},{"Name":"m_lazy_run","NodeId":"-766","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2116","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"wap_11_vwap_buy\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-2116"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2116","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3270","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"bar1d_wap_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-3270"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-3270"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-3270","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3276","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"#alpha5\n(-1 * ts_max(correlation(ts_rank(volume_0, 5), ts_rank(high_0, 5), 5), 3))\n#alpha16\n(-1 * ts_max(rank(correlation(rank(volume_0), rank(wap_11_vwap_buy), 5)), 5))\n#alpha90\n(rank(correlation(rank(wap_11_vwap_buy), rank(volume_0), 5)) * -1) \n#alpha141\n(rank(correlation(rank(high_0), rank(mean(volume_0,15)), 9))* -1) \n#alpha37\n(-1 * rank(((sum(open_0, 5) * sum(return_0, 5)) - delay((sum(open_0, 5) * sum(return_0, 5)), 10))))\nrank_return_10/rank_return_30\navg_turn_15/turn_0\nta_cci_14_0\nreturn_0\nturn_5/avg_turn_10\nswing_volatility_10_0/swing_volatility_60_0\nrank_amount_10/rank_amount_30\nlist_days_0\nmf_net_amount_xl_0\nturn_0/avg_turn_5\nrank_return_20\nrank_return_5/rank_return_20\navg_amount_5\nrank_avg_turn_5\nwap_11_vwap_buy","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-3276"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-3276","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3466","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-3466"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-3466"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-3466","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":11,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3493","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"high_0\nlow_0\nvolume_0\nopen_0\nclose_0\nreturn_0\n\nrank_return_10/rank_return_30\navg_turn_15/turn_0\nta_cci_14_0\nreturn_0\nturn_5/avg_turn_10\nswing_volatility_10_0/swing_volatility_60_0\nrank_amount_10/rank_amount_30\nlist_days_0\nmf_net_amount_xl_0\nturn_0/avg_turn_5\nrank_return_20\nrank_return_5/rank_return_20\navg_amount_5\nrank_avg_turn_5","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-3493"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-3493","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":12,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3498","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-3498"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-3498"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-3498","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3505","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-3505"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-3505"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-3505","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":21,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3726","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-3726"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-3726","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":22,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-6923","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-6923"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-6923"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-6923","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":24,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-7321","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"wap_11_vwap_buy\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-7321"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-7321","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":25,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-7326","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"bar1d_wap_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-7326"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-7326"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-7326","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":26,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-7332","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"#alpha5\n(-1 * ts_max(correlation(ts_rank(volume_0, 5), ts_rank(high_0, 5), 5), 3))\n#alpha16\n(-1 * ts_max(rank(correlation(rank(volume_0), rank(wap_11_vwap_buy), 5)), 5))\n#alpha90\n(rank(correlation(rank(wap_11_vwap_buy), rank(volume_0), 5)) * -1) \n#alpha141\n(rank(correlation(rank(high_0), rank(mean(volume_0,15)), 9))* -1) \n#alpha37\n(-1 * rank(((sum(open_0, 5) * sum(return_0, 5)) - delay((sum(open_0, 5) * sum(return_0, 5)), 10))))\nrank_return_10/rank_return_30\navg_turn_15/turn_0\nta_cci_14_0\nreturn_0\nturn_5/avg_turn_10\nswing_volatility_10_0/swing_volatility_60_0\nrank_amount_10/rank_amount_30\nlist_days_0\nmf_net_amount_xl_0\nturn_0/avg_turn_5\nrank_return_20\nrank_return_5/rank_return_20\navg_amount_5\nrank_avg_turn_5","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-7332"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-7332","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":27,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-7337","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-7337"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-7337"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-7337","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":28,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-7345","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"high_0\nlow_0\nvolume_0\nopen_0\nclose_0\nreturn_0\n\nrank_return_10/rank_return_30\navg_turn_15/turn_0\nta_cci_14_0\nreturn_0\nturn_5/avg_turn_10\nswing_volatility_10_0/swing_volatility_60_0\nrank_amount_10/rank_amount_30\nlist_days_0\nmf_net_amount_xl_0\nturn_0/avg_turn_5\nrank_return_20\nrank_return_5/rank_return_20\navg_amount_5\nrank_avg_turn_5","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-7345"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-7345","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":29,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-7350","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-7350"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-7350"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-7350","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":30,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-7357","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-7357"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-7357"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-7357","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":31,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-7363","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-7363"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-7363","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":32,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-7367","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-7367"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-7367"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-7367","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":33,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-9960","ModuleId":"BigQuantSpace.filter.filter-v3","ModuleParameters":[{"Name":"expr","Value":"st_status_0==0 and low_0_x>high_1 and close_0_x>open_0_x","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_left_data","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-9960"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-9960","OutputType":null},{"Name":"left_data","NodeId":"-9960","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":23,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-11908","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-11908"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-11908","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":34,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-12320","ModuleId":"BigQuantSpace.filter.filter-v3","ModuleParameters":[{"Name":"expr","Value":"st_status_0==0 and low_0_x>(high_1*1.02) and close_0_x>open_0_x","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_left_data","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-12320"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-12320","OutputType":null},{"Name":"left_data","NodeId":"-12320","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":35,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-12325","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-12325"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-12325","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":36,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-170","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nret_1=close/shift(close,1)\nret_3=close/shift(close,3)\nvolumepct_1=volume/shift(volume,1)\nbm_ret0=ret_1\nbm_ret1=shift(bm_ret0,1)\nbm_ret2=shift(bm_ret0,2)\nbm_ret3=ret_3\nbm_risk_v0=volumepct_1\nbm_risk_v1=shift(bm_risk_v0,1)\nbm_risk_v2=shift(bm_risk_v0,2)","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-170"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-170","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":37,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-172","ModuleId":"BigQuantSpace.index_feature_extract.index_feature_extract-v3","ModuleParameters":[{"Name":"before_days","Value":100,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"index","Value":"000001.HIX","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-172"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-172"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-172","OutputType":null},{"Name":"data_2","NodeId":"-172","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":38,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2702","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"left","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-2702"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-2702"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2702","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":39,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2709","ModuleId":"BigQuantSpace.sort.sort-v4","ModuleParameters":[{"Name":"sort_by","Value":"date,position","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"group_by","Value":"--","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"keep_columns","Value":"--","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ascending","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_ds","NodeId":"-2709"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"sort_by_ds","NodeId":"-2709"}],"OutputPortsInternal":[{"Name":"sorted_data","NodeId":"-2709","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":40,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='66,148,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='188,229,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='843,229,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='187,287,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='677,474,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1524,233,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='186,346,200,200'/><NodePosition Node='-86' Position='1212,341,200,200'/><NodePosition Node='-215' Position='484,228,200,200'/><NodePosition Node='-222' Position='484,290,200,200'/><NodePosition Node='-231' Position='1218,218,200,200'/><NodePosition Node='-238' Position='1218,282,200,200'/><NodePosition Node='-250' Position='762,763,200,200'/><NodePosition Node='-766' Position='614.1735229492188,384,200,200'/><NodePosition Node='-2116' Position='677,-50,200,200'/><NodePosition Node='-3270' Position='672,9,200,200'/><NodePosition Node='-3276' Position='687,93,200,200'/><NodePosition Node='-3466' Position='372,94,200,200'/><NodePosition Node='-3493' Position='382,-76,200,200'/><NodePosition Node='-3498' Position='378,-20,200,200'/><NodePosition Node='-3505' Position='375,37,200,200'/><NodePosition Node='-3726' Position='370,149,200,200'/><NodePosition Node='-6923' Position='270,417,200,200'/><NodePosition Node='-7321' Position='1325,-51,200,200'/><NodePosition Node='-7326' Position='1320,9,200,200'/><NodePosition Node='-7332' Position='1321,71,200,200'/><NodePosition Node='-7337' Position='1019,93,200,200'/><NodePosition Node='-7345' Position='1028,-77,200,200'/><NodePosition Node='-7350' Position='1026,-20,200,200'/><NodePosition Node='-7357' Position='1023,37,200,200'/><NodePosition Node='-7363' Position='1020,150,200,200'/><NodePosition Node='-7367' Position='1216,406,200,200'/><NodePosition Node='-9960' Position='269,476,200,200'/><NodePosition Node='-11908' Position='269,535,200,200'/><NodePosition Node='-12320' Position='1211,464,200,200'/><NodePosition Node='-12325' Position='1208,524,200,200'/><NodePosition Node='-170' Position='1607,503,200,200'/><NodePosition Node='-172' Position='1465,605,200,200'/><NodePosition Node='-2702' Position='760,571,200,200'/><NodePosition Node='-2709' Position='846,659,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
    In [28]:
    # 本代码由可视化策略环境自动生成 2020年3月17日 12:33
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 1
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        #context.stock_weights = (1,0)
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 1
        context.options['hold_days'] = 1
        #用于判断奇偶交易
        context.datecont = 0
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        if context.datecont == 0:
            context.datecont = 1
        else:
            context.datecont = 0
        
        positions = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}
        
        #大盘风控模块,读取风控数据
        today = data.current_dt.strftime('%Y-%m-%d')
        
         #----------------大盘风控模块,读取风控数据------------------
        risk = 0
        today = data.current_dt.strftime('%Y-%m-%d')
        bm_ret0=ranker_prediction.bm_ret0.values[0]
        bm_ret1=ranker_prediction.bm_ret1.values[0]
        bm_ret2=ranker_prediction.bm_ret2.values[0]
        bm_ret3=ranker_prediction.bm_ret3.values[0]
        bm_risk_v0=ranker_prediction.bm_risk_v0.values[0]
        bm_risk_v1=ranker_prediction.bm_risk_v1.values[0]
        bm_risk_v2=ranker_prediction.bm_risk_v2.values[0]
        
        if bm_ret0 < 0.001:
            if bm_risk_v0 > 0:
                print(today,'大盘放量下跌,全仓卖出')
                risk = 1
            elif bm_ret1 < 0.001 and bm_ret2 < 0.002:
                print(today,'大盘连续下跌,全仓卖出')
                risk = 1
            if bm_ret3 < -0.02:
                print(today,'大盘三日下跌超过2%,全仓卖出')
                risk = 1
        if bm_ret0 > 0.01:
            if (bm_risk_v0 + bm_risk_v1) < 0:
                print(today,'大盘缩量上涨,全仓卖出')
                risk = 1
                
        if risk == 1:
            
            if len(positions)>0:
                # 全部卖出后返回
                for instrument in positions:
                    if data.can_trade(context.symbol(instrument)):
                        context.order_target_percent(context.symbol(instrument), 0)
            return # 风控卖出后直接使用return结束当日交易,后续轮仓逻辑不再执行
        #---------------------大盘风控结束--------------------------------------
        
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        
       #------------------------------------------卖出模块START--------------------------------------------
        if len(positions) > 0:
            for instrument in positions.keys():
                last_sale_date = positions[instrument].last_sale_date   #上次交易日期
                delta_days = data.current_dt - last_sale_date  
                hold_days = delta_days.days #持仓天数
                if hold_days >= 0:
                    context.order_target(context.symbol(instrument), 0)
        #-------------------------------------------卖出模块END---------------------------------------------
        
        
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
    
        for i, instrument in enumerate(buy_instruments):
            try:
                cash = cash_for_buy * buy_cash_weights[i]
                if cash > max_cash_per_instrument - positions.get(instrument, 0):
                    # 确保股票持仓量不会超过每次股票最大的占用资金量
                    cash = max_cash_per_instrument - positions.get(instrument, 0)
                if context.datecont == 1:
                    # 获取今天和昨天的成交量
                    volume_since_buy = data.history(context.symbol(instrument), 'volume', 3, '1d')
                    close_price = data.current(context.symbol(instrument), 'close')  #当收盘价
                    high_price = data.current(context.symbol(instrument), 'high')  #当天最高价
                    if ((volume_since_buy[2]/volume_since_buy[1] < 2.5) or (high_price/close_price<1.05)) and volume_since_buy[2]/volume_since_buy[0] > 1:
                        current_price = data.current(context.symbol(instrument), 'price')
                        amount = math.floor(cash / current_price - cash / current_price % 100)
                        context.order(context.symbol(instrument), amount)
                        return
                    else:
                        print('today = ',today,'instrument = ',instrument)
            except:
                print('today = ',today,'instrument = ',instrument)
    
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        pass
    
    
    m1 = M.instruments.v2(
        start_date='2015-01-01',
        end_date='2019-01-01',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -2) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=True
    )
    
    m3 = M.input_features.v1(
        features="""close_0
    high_1
    open_0
    low_0
    st_status_0
    """
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=0
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m7 = M.join.v3(
        data1=m2.data,
        data2=m16.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m13 = M.dropnan.v1(
        input_data=m7.data
    )
    
    m9 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2019-10-26'),
        end_date=T.live_run_param('trading_date', '2020-03-11'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m17 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=0
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m17.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m14 = M.dropnan.v1(
        input_data=m18.data
    )
    
    m5 = M.input_features.v1(
        features="""wap_11_vwap_buy
    """
    )
    
    m6 = M.use_datasource.v1(
        instruments=m1.data,
        features=m5.data,
        datasource_id='bar1d_wap_CN_STOCK_A',
        start_date='',
        end_date=''
    )
    
    m10 = M.input_features.v1(
        features="""#alpha5
    (-1 * ts_max(correlation(ts_rank(volume_0, 5), ts_rank(high_0, 5), 5), 3))
    #alpha16
    (-1 * ts_max(rank(correlation(rank(volume_0), rank(wap_11_vwap_buy), 5)), 5))
    #alpha90
    (rank(correlation(rank(wap_11_vwap_buy), rank(volume_0), 5)) * -1) 
    #alpha141
    (rank(correlation(rank(high_0), rank(mean(volume_0,15)), 9))* -1) 
    #alpha37
    (-1 * rank(((sum(open_0, 5) * sum(return_0, 5)) - delay((sum(open_0, 5) * sum(return_0, 5)), 10))))
    rank_return_10/rank_return_30
    avg_turn_15/turn_0
    ta_cci_14_0
    return_0
    turn_5/avg_turn_10
    swing_volatility_10_0/swing_volatility_60_0
    rank_amount_10/rank_amount_30
    list_days_0
    mf_net_amount_xl_0
    turn_0/avg_turn_5
    rank_return_20
    rank_return_5/rank_return_20
    avg_amount_5
    rank_avg_turn_5
    wap_11_vwap_buy"""
    )
    
    m12 = M.input_features.v1(
        features="""high_0
    low_0
    volume_0
    open_0
    close_0
    return_0
    
    rank_return_10/rank_return_30
    avg_turn_15/turn_0
    ta_cci_14_0
    return_0
    turn_5/avg_turn_10
    swing_volatility_10_0/swing_volatility_60_0
    rank_amount_10/rank_amount_30
    list_days_0
    mf_net_amount_xl_0
    turn_0/avg_turn_5
    rank_return_20
    rank_return_5/rank_return_20
    avg_amount_5
    rank_avg_turn_5"""
    )
    
    m20 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m12.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m21 = M.join.v3(
        data1=m20.data,
        data2=m6.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m11 = M.derived_feature_extractor.v3(
        input_data=m21.data,
        features=m10.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m22 = M.dropnan.v1(
        input_data=m11.data
    )
    
    m24 = M.join.v3(
        data1=m13.data,
        data2=m22.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m23 = M.filter.v3(
        input_data=m24.data,
        expr='st_status_0==0 and low_0_x>high_1 and close_0_x>open_0_x',
        output_left_data=False
    )
    
    m34 = M.dropnan.v1(
        input_data=m23.data
    )
    
    m4 = M.stock_ranker_train.v6(
        training_ds=m34.data,
        features=m10.data,
        learning_algorithm='排序',
        number_of_leaves=30,
        minimum_docs_per_leaf=1000,
        number_of_trees=20,
        learning_rate=0.1,
        max_bins=1023,
        feature_fraction=1,
        data_row_fraction=1,
        ndcg_discount_base=1,
        m_lazy_run=False
    )
    
    m25 = M.input_features.v1(
        features="""wap_11_vwap_buy
    """
    )
    
    m26 = M.use_datasource.v1(
        instruments=m9.data,
        features=m25.data,
        datasource_id='bar1d_wap_CN_STOCK_A',
        start_date='',
        end_date=''
    )
    
    m27 = M.input_features.v1(
        features="""#alpha5
    (-1 * ts_max(correlation(ts_rank(volume_0, 5), ts_rank(high_0, 5), 5), 3))
    #alpha16
    (-1 * ts_max(rank(correlation(rank(volume_0), rank(wap_11_vwap_buy), 5)), 5))
    #alpha90
    (rank(correlation(rank(wap_11_vwap_buy), rank(volume_0), 5)) * -1) 
    #alpha141
    (rank(correlation(rank(high_0), rank(mean(volume_0,15)), 9))* -1) 
    #alpha37
    (-1 * rank(((sum(open_0, 5) * sum(return_0, 5)) - delay((sum(open_0, 5) * sum(return_0, 5)), 10))))
    rank_return_10/rank_return_30
    avg_turn_15/turn_0
    ta_cci_14_0
    return_0
    turn_5/avg_turn_10
    swing_volatility_10_0/swing_volatility_60_0
    rank_amount_10/rank_amount_30
    list_days_0
    mf_net_amount_xl_0
    turn_0/avg_turn_5
    rank_return_20
    rank_return_5/rank_return_20
    avg_amount_5
    rank_avg_turn_5"""
    )
    
    m29 = M.input_features.v1(
        features="""high_0
    low_0
    volume_0
    open_0
    close_0
    return_0
    
    rank_return_10/rank_return_30
    avg_turn_15/turn_0
    ta_cci_14_0
    return_0
    turn_5/avg_turn_10
    swing_volatility_10_0/swing_volatility_60_0
    rank_amount_10/rank_amount_30
    list_days_0
    mf_net_amount_xl_0
    turn_0/avg_turn_5
    rank_return_20
    rank_return_5/rank_return_20
    avg_amount_5
    rank_avg_turn_5"""
    )
    
    m30 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m29.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m31 = M.join.v3(
        data1=m30.data,
        data2=m26.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m28 = M.derived_feature_extractor.v3(
        input_data=m31.data,
        features=m27.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m32 = M.dropnan.v1(
        input_data=m28.data
    )
    
    m33 = M.join.v3(
        data1=m32.data,
        data2=m14.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m35 = M.filter.v3(
        input_data=m33.data,
        expr='st_status_0==0 and low_0_x>(high_1*1.02) and close_0_x>open_0_x',
        output_left_data=False
    )
    
    m36 = M.dropnan.v1(
        input_data=m35.data
    )
    
    m8 = M.stock_ranker_predict.v5(
        model=m4.model,
        data=m36.data,
        m_lazy_run=False
    )
    
    m37 = M.input_features.v1(
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    ret_1=close/shift(close,1)
    ret_3=close/shift(close,3)
    volumepct_1=volume/shift(volume,1)
    bm_ret0=ret_1
    bm_ret1=shift(bm_ret0,1)
    bm_ret2=shift(bm_ret0,2)
    bm_ret3=ret_3
    bm_risk_v0=volumepct_1
    bm_risk_v1=shift(bm_risk_v0,1)
    bm_risk_v2=shift(bm_risk_v0,2)"""
    )
    
    m38 = M.index_feature_extract.v3(
        input_1=m9.data,
        input_2=m37.data,
        before_days=100,
        index='000001.HIX'
    )
    
    m39 = M.join.v3(
        data1=m8.predictions,
        data2=m38.data_1,
        on='date',
        how='left',
        sort=False
    )
    
    m40 = M.sort.v4(
        input_ds=m39.data,
        sort_by='date,position',
        group_by='--',
        keep_columns='--',
        ascending=True
    )
    
    m19 = M.trade.v4(
        instruments=m9.data,
        options_data=m40.sorted_data,
        start_date='',
        end_date='',
        initialize=m19_initialize_bigquant_run,
        handle_data=m19_handle_data_bigquant_run,
        prepare=m19_prepare_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=100000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.SHA'
    )
    
    设置测试数据集,查看训练迭代过程的NDCG
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-4478c4fe26424d65973f7334d01be955"}/bigcharts-data-end

    Trade (回测/模拟)(trade)使用错误,你可以:

    1.一键查看文档

    2.一键搜索答案

    ---------------------------------------------------------------------------
    IndexError                                Traceback (most recent call last)
    <ipython-input-28-d7fbb752e6c9> in <module>()
        528     plot_charts=True,
        529     backtest_only=False,
    --> 530     benchmark='000300.SHA'
        531 )
    
    <ipython-input-28-d7fbb752e6c9> in m19_handle_data_bigquant_run(context, data)
         41     risk = 0
         42     today = data.current_dt.strftime('%Y-%m-%d')
    ---> 43     bm_ret0=ranker_prediction.bm_ret0.values[0]
         44     bm_ret1=ranker_prediction.bm_ret1.values[0]
         45     bm_ret2=ranker_prediction.bm_ret2.values[0]
    
    IndexError: index 0 is out of bounds for axis 0 with size 0
    In [ ]:
    m39.data.read()