{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-773:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-768:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-768:input_1","from_node_id":"-113:data"},{"to_node_id":"-168:inputs","from_node_id":"-160:data"},{"to_node_id":"-682:inputs","from_node_id":"-160:data"},{"to_node_id":"-224:inputs","from_node_id":"-168:data"},{"to_node_id":"-231:inputs","from_node_id":"-196:data"},{"to_node_id":"-196:inputs","from_node_id":"-224:data"},{"to_node_id":"-238:inputs","from_node_id":"-231:data"},{"to_node_id":"-682:outputs","from_node_id":"-238:data"},{"to_node_id":"-1098:input_model","from_node_id":"-682:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-768:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-773:data"},{"to_node_id":"-1098:training_data","from_node_id":"-243:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2015-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0/mean(close_0,5)\nclose_0/mean(close_0,10)\nclose_0/mean(close_0,20)\nclose_0/open_0\nopen_0/mean(close_0,5)\nopen_0/mean(close_0,10)\nopen_0/mean(close_0,20)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"7","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-168","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"256","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-168"}],"output_ports":[{"name":"data","node_id":"-168"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-196","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"128","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-196"}],"output_ports":[{"name":"data","node_id":"-196"}],"cacheable":false,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-224","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-224"}],"output_ports":[{"name":"data","node_id":"-224"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":false,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":false,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-682","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-682"},{"name":"outputs","node_id":"-682"}],"output_ports":[{"name":"data","node_id":"-682"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-1098","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"5","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-1098"},{"name":"training_data","node_id":"-1098"},{"name":"validation_data","node_id":"-1098"}],"output_ports":[{"name":"data","node_id":"-1098"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-768","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-768"},{"name":"input_2","node_id":"-768"}],"output_ports":[{"name":"data","node_id":"-768"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-773","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-773"},{"name":"input_2","node_id":"-773"}],"output_ports":[{"name":"data","node_id":"-773"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='207,58,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='131,205,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='766,2,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='301,459,200,200'/><node_position Node='-106' Position='412,184,200,200'/><node_position Node='-113' Position='428,278,200,200'/><node_position Node='-160' Position='-202,33,200,200'/><node_position Node='-168' Position='-201,148,200,200'/><node_position Node='-196' Position='-203,311,200,200'/><node_position Node='-224' Position='-203,239,200,200'/><node_position Node='-231' Position='-201,395,200,200'/><node_position Node='-238' Position='-198,470,200,200'/><node_position Node='-682' Position='-194,560,200,200'/><node_position Node='-1098' Position='-50,765,200,200'/><node_position Node='-768' Position='454,369,200,200'/><node_position Node='-773' Position='137,329,200,200'/><node_position Node='-243' Position='294,543,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-12-14 17:55:26.409224] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-14 17:55:26.451717] INFO: moduleinvoker: 命中缓存
[2021-12-14 17:55:26.454340] INFO: moduleinvoker: instruments.v2 运行完成[0.045165s].
[2021-12-14 17:55:26.469282] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-12-14 17:55:26.480309] INFO: moduleinvoker: 命中缓存
[2021-12-14 17:55:26.484975] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.01566s].
[2021-12-14 17:55:26.506515] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-12-14 17:56:10.209667] INFO: moduleinvoker: standardlize.v8 运行完成[43.703145s].
[2021-12-14 17:56:10.233932] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-14 17:56:10.273752] INFO: moduleinvoker: input_features.v1 运行完成[0.039834s].
[2021-12-14 17:56:10.320579] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-14 17:56:25.123551] INFO: 基础特征抽取: 年份 2010, 特征行数=431567
[2021-12-14 17:56:28.070605] INFO: 基础特征抽取: 年份 2011, 特征行数=511455
[2021-12-14 17:58:16.170801] INFO: 基础特征抽取: 年份 2012, 特征行数=565675
[2021-12-14 17:58:32.282871] INFO: 基础特征抽取: 年份 2013, 特征行数=564168
[2021-12-14 17:59:04.821767] INFO: 基础特征抽取: 年份 2014, 特征行数=569948
[2021-12-14 17:59:25.167844] INFO: 基础特征抽取: 年份 2015, 特征行数=569698
[2021-12-14 17:59:25.715077] INFO: 基础特征抽取: 总行数: 3212511
[2021-12-14 17:59:25.725100] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[195.404528s].
[2021-12-14 17:59:25.770540] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-14 18:00:19.529990] INFO: derived_feature_extractor: 提取完成 close_0/mean(close_0,5), 46.185s
[2021-12-14 18:00:22.417696] INFO: derived_feature_extractor: 提取完成 close_0/mean(close_0,10), 2.886s
[2021-12-14 18:00:25.288411] INFO: derived_feature_extractor: 提取完成 close_0/mean(close_0,20), 2.869s
[2021-12-14 18:00:25.309839] INFO: derived_feature_extractor: 提取完成 close_0/open_0, 0.019s
[2021-12-14 18:00:28.191673] INFO: derived_feature_extractor: 提取完成 open_0/mean(close_0,5), 2.880s
[2021-12-14 18:00:31.068696] INFO: derived_feature_extractor: 提取完成 open_0/mean(close_0,10), 2.874s
[2021-12-14 18:00:40.886890] INFO: derived_feature_extractor: 提取完成 open_0/mean(close_0,20), 9.816s
[2021-12-14 18:00:42.656997] INFO: derived_feature_extractor: /y_2010, 431567
[2021-12-14 18:00:44.313869] INFO: derived_feature_extractor: /y_2011, 511455
[2021-12-14 18:00:46.264462] INFO: derived_feature_extractor: /y_2012, 565675
[2021-12-14 18:00:48.724954] INFO: derived_feature_extractor: /y_2013, 564168
[2021-12-14 18:00:51.323034] INFO: derived_feature_extractor: /y_2014, 569948
[2021-12-14 18:00:53.658461] INFO: derived_feature_extractor: /y_2015, 569698
[2021-12-14 18:00:55.156057] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[89.385512s].
[2021-12-14 18:00:55.167529] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-12-14 18:02:01.197041] INFO: moduleinvoker: standardlize.v8 运行完成[66.0295s].
[2021-12-14 18:02:01.247595] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-14 18:02:37.339580] INFO: join: /data, 行数=3133725/3159055, 耗时=19.178808s
[2021-12-14 18:02:37.813652] INFO: join: 最终行数: 3133725
[2021-12-14 18:02:37.975762] INFO: moduleinvoker: join.v3 运行完成[36.728156s].
[2021-12-14 18:02:38.022624] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-12-14 18:02:45.040060] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[7.017451s].
[2021-12-14 18:02:52.542839] INFO: moduleinvoker: dl_layer_input.v1 运行完成[7.4766s].
[2021-12-14 18:02:55.217831] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[2.644655s].
[2021-12-14 18:02:55.272535] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.017108s].
[2021-12-14 18:02:55.326690] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.026602s].
[2021-12-14 18:02:55.355698] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.007059s].
[2021-12-14 18:02:55.395377] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.022403s].
[2021-12-14 18:02:55.484154] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-14 18:02:55.498403] INFO: moduleinvoker: 命中缓存
[2021-12-14 18:02:55.504541] INFO: moduleinvoker: cached.v3 运行完成[0.020429s].
[2021-12-14 18:02:55.512289] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.096868s].
[2021-12-14 18:02:55.553647] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2021-12-14 18:02:56.751292] INFO: dl_model_train: 准备训练,训练样本个数:3133725,迭代次数:5
[2021-12-14 18:04:02.857647] INFO: dl_model_train: 训练结束,耗时:66.10s
[2021-12-14 18:04:02.999413] INFO: moduleinvoker: dl_model_train.v1 运行完成[67.445617s].
Epoch 1/5
3061/3061 - 14s - loss: 0.9903 - mse: 0.9903
Epoch 2/5
3061/3061 - 13s - loss: 0.9891 - mse: 0.9891
Epoch 3/5
3061/3061 - 16s - loss: 0.9888 - mse: 0.9888
Epoch 4/5
3061/3061 - 13s - loss: 0.9886 - mse: 0.9886
Epoch 5/5
3061/3061 - 10s - loss: 0.9885 - mse: 0.9885