复制链接
克隆策略

    {"description":"实验创建于2022/4/8","graph":{"edges":[{"to_node_id":"-1290:features","from_node_id":"-1278:data"},{"to_node_id":"-2427:features","from_node_id":"-1278:data"},{"to_node_id":"-1290:input_data","from_node_id":"-1283:data"},{"to_node_id":"-1079:input_data","from_node_id":"-1283:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-1290:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-1079:data"},{"to_node_id":"-186:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"-3135:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-2427:input_data","from_node_id":"-2411:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-2427:data"},{"to_node_id":"-760:input","from_node_id":"-512:data"},{"to_node_id":"-2411:instruments","from_node_id":"-760:instrument_list"},{"to_node_id":"-3135:instruments","from_node_id":"-760:instrument_list"},{"to_node_id":"-1283:instruments","from_node_id":"-123:data"},{"to_node_id":"-512:instruments","from_node_id":"-177:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"-186:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"-189:data"},{"to_node_id":"-186:features","from_node_id":"-189:data"}],"nodes":[{"node_id":"-1278","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"return_5 = close/shift(close, 5)\nreturn_10 = close/shift(close, 10)\nreturn_20 = close/shift(close, 20)\namount/mean(amount,5)\nmean(amount,5)/mean(amount,20)\nrank(amount)/rank(mean(amount,5))\nrank(mean(amount,5))/rank(mean(amount,10))\nrank(close/shift(close, 1))\nrank(close/shift(close, 5))\nrank(close/shift(close, 10)) \nrank(close/shift(close, 1))/rank(close/shift(close, 5)) \nrank(close/shift(close, 5))/rank(close/shift(close, 10))","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-1278"}],"output_ports":[{"name":"data","node_id":"-1278"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-1283","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"bar1d_CN_CONBOND","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-1283"},{"name":"features","node_id":"-1283"}],"output_ports":[{"name":"data","node_id":"-1283"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-1290","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1290"},{"name":"features","node_id":"-1290"}],"output_ports":[{"name":"data","node_id":"-1290"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-1079","module_id":"BigQuantSpace.auto_labeler_on_datasource.auto_labeler_on_datasource-v1","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1079"}],"output_ports":[{"name":"data","node_id":"-1079"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"30","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"1000","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"20","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-2411","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"bar1d_CN_CONBOND","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-09-15","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-2411"},{"name":"features","node_id":"-2411"}],"output_ports":[{"name":"data","node_id":"-2411"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-2427","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-2427"},{"name":"features","node_id":"-2427"}],"output_ports":[{"name":"data","node_id":"-2427"}],"cacheable":true,"seq_num":30,"comment":"","comment_collapsed":true},{"node_id":"-3135","module_id":"BigQuantSpace.hftrade.hftrade-v2","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 交易引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载股票指标数据,数据继承自m6模块\n context.indicator_data = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n \n # 设置数量\n context.stock_num = 10\n \n # 调仓天数,22个交易日大概就是一个月。可以理解为一个月换仓一次\n context.rebalance_days = 22\n \n # 如果策略运行中,需要将数据进行保存,可以借用extension这个对象,类型为dict\n # 比如当前运行的k线的索引,比如个股持仓天数、买入均价\n context.extension.index = 0\n context.subscribe(context.instruments)\n ","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 交易引擎:每个单位时间开盘前调用一次。\ndef bigquant_run(context, data):\n pass","type":"Literal","bound_global_parameter":null},{"name":"handle_tick","value":"# 交易引擎:tick数据处理函数,每个tick执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n context.extension.index += 1\n # 不在换仓日就return,相当于后面的代码只会一个月运行一次,买入的股票会持有1个月\n if context.extension.index % context.rebalance_days != 0:\n return\n \n # 当前的日期\n date = data.current_dt.strftime('%Y-%m-%d')\n cur_data = context.indicator_data[context.indicator_data['date'] == date]\n\n stock_to_buy = list(cur_data.instrument[:context.stock_num])\n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = [equity for equity in context.portfolio.positions]\n # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有\n no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]\n # 需要卖出的股票\n stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell] \n \n # 卖出\n\n for stock in stock_to_sell:\n context.order_target_percent(stock, 0)\n \n # 如果当天没有买入的股票,就返回\n if len(stock_to_buy) == 0:\n print(date,'当天没有买入的股票')\n return\n\n # 等权重买入 \n weight = 1 / len(stock_to_buy)\n print(stock_to_buy,weight)\n # 买入\n for stock in stock_to_buy:\n context.order_target_percent(stock, weight)\n ","type":"Literal","bound_global_parameter":null},{"name":"handle_trade","value":"# 交易引擎:成交回报处理函数,每个成交发生时执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_order","value":"# 交易引擎:委托回报处理函数,每个委托变化时执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"after_trading","value":"# 交易引擎:盘后处理函数,每日盘后执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"1000001","type":"Literal","bound_global_parameter":null},{"name":"frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"可转债","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"0","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":1,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"close","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"disable_cache","value":"False","type":"Literal","bound_global_parameter":null},{"name":"replay_bdb","value":"False","type":"Literal","bound_global_parameter":null},{"name":"show_debug_info","value":"False","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-3135"},{"name":"options_data","node_id":"-3135"},{"name":"history_ds","node_id":"-3135"},{"name":"benchmark_ds","node_id":"-3135"}],"output_ports":[{"name":"raw_perf","node_id":"-3135"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-512","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"market_performance_CN_CONBOND","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-512"},{"name":"features","node_id":"-512"}],"output_ports":[{"name":"data","node_id":"-512"}],"cacheable":false,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-760","module_id":"BigQuantSpace.trade_data_generation.trade_data_generation-v1","parameters":[{"name":"category","value":"CN_STOCK","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input","node_id":"-760"}],"output_ports":[{"name":"history_data","node_id":"-760"},{"name":"instrument_list","node_id":"-760"},{"name":"calendar","node_id":"-760"}],"cacheable":false,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-127","module_id":"BigQuantSpace.hyper_rolling_train.hyper_rolling_train-v1","parameters":[{"name":"run","value":"def bigquant_run(\n bq_graph,\n inputs,\n trading_days_market='CN', # 使用那个市场的交易日历, TODO\n train_instruments_mid='m4', # 训练数据 证券代码列表 模块id\n test_instruments_mid='m22', # 测试数据 证券代码列表 模块id\n predict_mid='m17', # 预测 模块id\n trade_mid='m19', # 回测 模块id\n start_date='2017-01-01', # 数据开始日期\n end_date=T.live_run_param('trading_date', '2022-09-16'), # 数据结束日期\n train_update_days=22, # 更新周期,按交易日计算,每多少天更新一次\n train_update_days_for_live=None, #模拟实盘模式下的更新周期,按交易日计算,每多少天更新一次。如果需要在模拟实盘阶段使用不同的模型更新周期,可以设置这个参数\n train_data_min_days=250, # 最小数据天数,按交易日计算,所以第一个滚动的结束日期是 从开始日期到开始日期+最小数据天数\n train_data_max_days=250, # 最大数据天数,按交易日计算,0,表示没有限制,否则每一个滚动的开始日期=max(此滚动的结束日期-最大数据天数, 开始日期\n rolling_count_for_live=1, #实盘模式下滚动次数,模拟实盘模式下,取最后多少次滚动。一般在模拟实盘模式下,只用到最后一次滚动训练的模型,这里可以设置为1;如果你的滚动训练数据时间段很短,以至于期间可能没有训练数据,这里可以设置大一点。0表示没有限制\n):\n def merge_datasources(input_1):\n df_list = [ds[0].read_df().set_index('date').loc[ds[1]:].reset_index() for ds in input_1]\n df = pd.concat(df_list)\n instrument_data = {\n 'start_date': df['date'].min().strftime('%Y-%m-%d'),\n 'end_date': df['date'].max().strftime('%Y-%m-%d'),\n 'instruments': list(set(df['instrument'])),\n }\n return Outputs(data=DataSource.write_df(df), instrument_data=DataSource.write_pickle(instrument_data))\n\n def gen_rolling_dates(trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live):\n # 是否实盘模式\n tdays = list(D.trading_days(market=trading_days_market, start_date=start_date, end_date=end_date)['date'])\n is_live_run = T.live_run_param('trading_date', None) is not None\n\n if is_live_run and train_update_days_for_live:\n train_update_days = train_update_days_for_live\n\n rollings = []\n train_end_date = train_data_min_days\n while train_end_date < len(tdays):\n if train_data_max_days is not None and train_data_max_days > 0:\n train_start_date = max(train_end_date - train_data_max_days, 0)\n else:\n train_start_date = 0\n rollings.append({\n 'train_start_date': tdays[train_start_date].strftime('%Y-%m-%d'),\n 'train_end_date': tdays[train_end_date - 1].strftime('%Y-%m-%d'),\n 'test_start_date': tdays[train_end_date].strftime('%Y-%m-%d'),\n 'test_end_date': tdays[min(train_end_date + train_update_days, len(tdays)) - 1].strftime('%Y-%m-%d'),\n })\n train_end_date += train_update_days\n\n if not rollings:\n raise Exception('没有滚动需要执行,请检查配置')\n\n if is_live_run and rolling_count_for_live:\n rollings = rollings[-rolling_count_for_live:]\n\n return rollings\n\n g = bq_graph\n\n rolling_dates = gen_rolling_dates(\n trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)\n\n # 训练和预测\n results = []\n for rolling in rolling_dates:\n parameters = {}\n # 先禁用回测\n parameters[trade_mid + '.__enabled__'] = False\n parameters[train_instruments_mid + '.start_date'] = rolling['train_start_date']\n parameters[train_instruments_mid + '.end_date'] = rolling['train_end_date']\n parameters[test_instruments_mid + '.start_date'] = rolling['test_start_date']\n parameters[test_instruments_mid + '.end_date'] = rolling['test_end_date']\n print('------ rolling_train:', parameters)\n results.append(g.run(parameters))\n\n # 合并预测结果并回测\n mx = M.cached.v3(run=merge_datasources, input_1=[[result[predict_mid].predictions, result[test_instruments_mid].data.read_pickle()['start_date']] for result in results])\n parameters = {}\n parameters['*.__enabled__'] = False\n parameters[trade_mid + '.__enabled__'] = True\n parameters[trade_mid + '.instruments'] = mx.instrument_data\n parameters[trade_mid + '.options_data'] = mx.data\n\n trade = g.run(parameters)\n\n return {'rollings': results, 'trade': trade}\n","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-127"},{"name":"input_1","node_id":"-127"},{"name":"input_2","node_id":"-127"},{"name":"input_3","node_id":"-127"}],"output_ports":[{"name":"result","node_id":"-127"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-123","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2017-01-03","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2018-01-09","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_CONBOND","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-123"}],"output_ports":[{"name":"data","node_id":"-123"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-177","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-10","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2018-02-08","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_CONBOND","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-177"}],"output_ports":[{"name":"data","node_id":"-177"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-186","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-186"},{"name":"features","node_id":"-186"}],"output_ports":[{"name":"data","node_id":"-186"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-189","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"return_5\nreturn_10\nreturn_20\namount/mean(amount,5)\nmean(amount,5)/mean(amount,20)\nrank(amount)/rank(mean(amount,5))\nrank(mean(amount,5))/rank(mean(amount,10))\nrank(close/shift(close, 1))\nrank(close/shift(close, 5))\nrank(close/shift(close, 10)) \nrank(close/shift(close, 1))/rank(close/shift(close, 5)) \nrank(close/shift(close, 5))/rank(close/shift(close, 10))","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-189"}],"output_ports":[{"name":"data","node_id":"-189"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-1278' Position='1318,-545,200,200'/><node_position Node='-1283' Position='982.5711669921875,-486.3546142578125,200,200'/><node_position Node='-1290' Position='1194,-247,200,200'/><node_position Node='-1079' Position='816.7484130859375,-321.18145751953125,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='1097,-104,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='1265.961669921875,107,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='1471,245,200,200'/><node_position Node='-2411' Position='1729,-192,200,200'/><node_position Node='-2427' Position='1722,6,200,200'/><node_position Node='-3135' Position='1742,400,200,200'/><node_position Node='-512' Position='1734,-522,200,200'/><node_position Node='-760' Position='1764.272216796875,-401.3488464355469,200,200'/><node_position Node='-127' Position='535.4886474609375,0.2774391174316406,200,200'/><node_position Node='-123' Position='980.08984375,-585.123779296875,200,200'/><node_position Node='-177' Position='1736.416015625,-620.9364013671875,200,200'/><node_position Node='-186' Position='1107.6002197265625,0.377838134765625,200,200'/><node_position Node='-189' Position='1432.8509521484375,-121.7753677368164,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [ ]:
    # 本代码由可视化策略环境自动生成 2022年12月6日 18:46
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 交易引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
           # 加载股票指标数据,数据继承自m6模块
        context.indicator_data = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        
        # 设置数量
        context.stock_num = 10
        
        # 调仓天数,22个交易日大概就是一个月。可以理解为一个月换仓一次
        context.rebalance_days = 22
        
        # 如果策略运行中,需要将数据进行保存,可以借用extension这个对象,类型为dict
        # 比如当前运行的k线的索引,比如个股持仓天数、买入均价
        context.extension.index = 0
        context.subscribe(context.instruments)
     
    # 交易引擎:每个单位时间开盘前调用一次。
    def m19_before_trading_start_bigquant_run(context, data):
        pass
    # 交易引擎:tick数据处理函数,每个tick执行一次
    def m19_handle_tick_bigquant_run(context, data):
        pass
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        
        context.extension.index += 1
        # 不在换仓日就return,相当于后面的代码只会一个月运行一次,买入的股票会持有1个月
        if  context.extension.index % context.rebalance_days != 0:
            return
        
        # 当前的日期
        date = data.current_dt.strftime('%Y-%m-%d')
        cur_data = context.indicator_data[context.indicator_data['date'] == date]
    
        stock_to_buy = list(cur_data.instrument[:context.stock_num])
        # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表
        stock_hold_now = [equity for equity in context.portfolio.positions]
        # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有
        no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]
        # 需要卖出的股票
        stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell] 
        
        # 卖出
    
        for stock in stock_to_sell:
            context.order_target_percent(stock, 0)
        
        # 如果当天没有买入的股票,就返回
        if len(stock_to_buy) == 0:
            print(date,'当天没有买入的股票')
            return
    
        # 等权重买入 
        weight =  1 / len(stock_to_buy)
        print(stock_to_buy,weight)
        # 买入
        for stock in stock_to_buy:
            context.order_target_percent(stock, weight)
     
    # 交易引擎:成交回报处理函数,每个成交发生时执行一次
    def m19_handle_trade_bigquant_run(context, data):
        pass
    
    # 交易引擎:委托回报处理函数,每个委托变化时执行一次
    def m19_handle_order_bigquant_run(context, data):
        pass
    
    # 交易引擎:盘后处理函数,每日盘后执行一次
    def m19_after_trading_bigquant_run(context, data):
        pass
    
    
    g = T.Graph({
    
        'm11': 'M.input_features.v1',
        'm11.features': """return_5 = close/shift(close, 5)
    return_10 = close/shift(close, 10)
    return_20 = close/shift(close, 20)
    amount/mean(amount,5)
    mean(amount,5)/mean(amount,20)
    rank(amount)/rank(mean(amount,5))
    rank(mean(amount,5))/rank(mean(amount,10))
    rank(close/shift(close, 1))
    rank(close/shift(close, 5))
    rank(close/shift(close, 10))     
    rank(close/shift(close, 1))/rank(close/shift(close, 5))    
    rank(close/shift(close, 5))/rank(close/shift(close, 10))""",
    
        'm4': 'M.instruments.v2',
        'm4.start_date': '2017-01-03',
        'm4.end_date': '2018-01-09',
        'm4.market': 'CN_CONBOND',
        'm4.instrument_list': '',
        'm4.max_count': 0,
    
        'm12': 'M.use_datasource.v1',
        'm12.instruments': T.Graph.OutputPort('m4.data'),
        'm12.datasource_id': 'bar1d_CN_CONBOND',
        'm12.start_date': '',
        'm12.end_date': '',
        'm12.m_cached': False,
    
        'm13': 'M.derived_feature_extractor.v3',
        'm13.input_data': T.Graph.OutputPort('m12.data'),
        'm13.features': T.Graph.OutputPort('m11.data'),
        'm13.date_col': 'date',
        'm13.instrument_col': 'instrument',
        'm13.drop_na': False,
        'm13.remove_extra_columns': False,
        'm13.user_functions': {},
    
        'm14': 'M.auto_labeler_on_datasource.v1',
        'm14.input_data': T.Graph.OutputPort('m12.data'),
        'm14.label_expr': """# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        'm14.drop_na_label': True,
        'm14.cast_label_int': True,
        'm14.date_col': 'date',
        'm14.instrument_col': 'instrument',
        'm14.user_functions': {},
    
        'm15': 'M.join.v3',
        'm15.data1': T.Graph.OutputPort('m14.data'),
        'm15.data2': T.Graph.OutputPort('m13.data'),
        'm15.on': 'date,instrument',
        'm15.how': 'inner',
        'm15.sort': False,
    
        'm22': 'M.instruments.v2',
        'm22.start_date': '2018-01-10',
        'm22.end_date': '2018-02-08',
        'm22.market': 'CN_CONBOND',
        'm22.instrument_list': '',
        'm22.max_count': 0,
    
        'm1': 'M.use_datasource.v1',
        'm1.instruments': T.Graph.OutputPort('m22.data'),
        'm1.datasource_id': 'market_performance_CN_CONBOND',
        'm1.start_date': '',
        'm1.end_date': '',
        'm1.m_cached': False,
    
        'm2': 'M.trade_data_generation.v1',
        'm2.input': T.Graph.OutputPort('m1.data'),
        'm2.category': 'CN_STOCK',
        'm2.m_cached': False,
    
        'm28': 'M.use_datasource.v1',
        'm28.instruments': T.Graph.OutputPort('m2.instrument_list'),
        'm28.datasource_id': 'bar1d_CN_CONBOND',
        'm28.start_date': '2018-01-01',
        'm28.end_date': '2021-09-15',
    
        'm30': 'M.derived_feature_extractor.v3',
        'm30.input_data': T.Graph.OutputPort('m28.data'),
        'm30.features': T.Graph.OutputPort('m11.data'),
        'm30.date_col': 'date',
        'm30.instrument_col': 'instrument',
        'm30.drop_na': False,
        'm30.remove_extra_columns': False,
        'm30.user_functions': {},
    
        'm18': 'M.input_features.v1',
        'm18.features': """return_5
    return_10
    return_20
    amount/mean(amount,5)
    mean(amount,5)/mean(amount,20)
    rank(amount)/rank(mean(amount,5))
    rank(mean(amount,5))/rank(mean(amount,10))
    rank(close/shift(close, 1))
    rank(close/shift(close, 5))
    rank(close/shift(close, 10))     
    rank(close/shift(close, 1))/rank(close/shift(close, 5))    
    rank(close/shift(close, 5))/rank(close/shift(close, 10))""",
    
        'm23': 'M.dropnan.v2',
        'm23.input_data': T.Graph.OutputPort('m15.data'),
        'm23.features': T.Graph.OutputPort('m18.data'),
    
        'm16': 'M.stock_ranker_train.v6',
        'm16.training_ds': T.Graph.OutputPort('m23.data'),
        'm16.features': T.Graph.OutputPort('m18.data'),
        'm16.learning_algorithm': '排序',
        'm16.number_of_leaves': 30,
        'm16.minimum_docs_per_leaf': 1000,
        'm16.number_of_trees': 20,
        'm16.learning_rate': 0.1,
        'm16.max_bins': 1023,
        'm16.feature_fraction': 1,
        'm16.data_row_fraction': 1,
        'm16.plot_charts': True,
        'm16.ndcg_discount_base': 1,
        'm16.m_lazy_run': False,
    
        'm17': 'M.stock_ranker_predict.v5',
        'm17.model': T.Graph.OutputPort('m16.model'),
        'm17.data': T.Graph.OutputPort('m30.data'),
        'm17.m_lazy_run': False,
    
        'm19': 'M.hftrade.v2',
        'm19.instruments': T.Graph.OutputPort('m2.instrument_list'),
        'm19.options_data': T.Graph.OutputPort('m17.predictions'),
        'm19.start_date': '',
        'm19.end_date': '',
        'm19.initialize': m19_initialize_bigquant_run,
        'm19.before_trading_start': m19_before_trading_start_bigquant_run,
        'm19.handle_tick': m19_handle_tick_bigquant_run,
        'm19.handle_data': m19_handle_data_bigquant_run,
        'm19.handle_trade': m19_handle_trade_bigquant_run,
        'm19.handle_order': m19_handle_order_bigquant_run,
        'm19.after_trading': m19_after_trading_bigquant_run,
        'm19.capital_base': 1000001,
        'm19.frequency': 'daily',
        'm19.price_type': '真实价格',
        'm19.product_type': '可转债',
        'm19.before_start_days': '0',
        'm19.volume_limit': 1,
        'm19.order_price_field_buy': 'close',
        'm19.order_price_field_sell': 'close',
        'm19.benchmark': '000300.HIX',
        'm19.plot_charts': True,
        'm19.disable_cache': False,
        'm19.replay_bdb': False,
        'm19.show_debug_info': False,
        'm19.backtest_only': False,
    })
    
    # g.run({})
    
    
    def m3_run_bigquant_run(
        bq_graph,
        inputs,
        trading_days_market='CN', # 使用那个市场的交易日历, TODO
        train_instruments_mid='m4', # 训练数据 证券代码列表 模块id
        test_instruments_mid='m22', # 测试数据 证券代码列表 模块id
        predict_mid='m17', # 预测 模块id
        trade_mid='m19', # 回测 模块id
        start_date='2017-01-01', # 数据开始日期
        end_date=T.live_run_param('trading_date', '2022-09-16'), # 数据结束日期
        train_update_days=22, # 更新周期,按交易日计算,每多少天更新一次
        train_update_days_for_live=None, #模拟实盘模式下的更新周期,按交易日计算,每多少天更新一次。如果需要在模拟实盘阶段使用不同的模型更新周期,可以设置这个参数
        train_data_min_days=250, # 最小数据天数,按交易日计算,所以第一个滚动的结束日期是 从开始日期到开始日期+最小数据天数
        train_data_max_days=250, # 最大数据天数,按交易日计算,0,表示没有限制,否则每一个滚动的开始日期=max(此滚动的结束日期-最大数据天数, 开始日期
        rolling_count_for_live=1, #实盘模式下滚动次数,模拟实盘模式下,取最后多少次滚动。一般在模拟实盘模式下,只用到最后一次滚动训练的模型,这里可以设置为1;如果你的滚动训练数据时间段很短,以至于期间可能没有训练数据,这里可以设置大一点。0表示没有限制
    ):
        def merge_datasources(input_1):
            df_list = [ds[0].read_df().set_index('date').loc[ds[1]:].reset_index() for ds in input_1]
            df = pd.concat(df_list)
            instrument_data = {
                'start_date': df['date'].min().strftime('%Y-%m-%d'),
                'end_date': df['date'].max().strftime('%Y-%m-%d'),
                'instruments': list(set(df['instrument'])),
            }
            return Outputs(data=DataSource.write_df(df), instrument_data=DataSource.write_pickle(instrument_data))
    
        def gen_rolling_dates(trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live):
            # 是否实盘模式
            tdays = list(D.trading_days(market=trading_days_market, start_date=start_date, end_date=end_date)['date'])
            is_live_run = T.live_run_param('trading_date', None) is not None
    
            if is_live_run and train_update_days_for_live:
                train_update_days = train_update_days_for_live
    
            rollings = []
            train_end_date = train_data_min_days
            while train_end_date < len(tdays):
                if train_data_max_days is not None and train_data_max_days > 0:
                    train_start_date = max(train_end_date - train_data_max_days, 0)
                else:
                    train_start_date = 0
                rollings.append({
                    'train_start_date': tdays[train_start_date].strftime('%Y-%m-%d'),
                    'train_end_date': tdays[train_end_date - 1].strftime('%Y-%m-%d'),
                    'test_start_date': tdays[train_end_date].strftime('%Y-%m-%d'),
                    'test_end_date': tdays[min(train_end_date + train_update_days, len(tdays)) - 1].strftime('%Y-%m-%d'),
                })
                train_end_date += train_update_days
    
            if not rollings:
                raise Exception('没有滚动需要执行,请检查配置')
    
            if is_live_run and rolling_count_for_live:
                rollings = rollings[-rolling_count_for_live:]
    
            return rollings
    
        g = bq_graph
    
        rolling_dates = gen_rolling_dates(
            trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)
    
        # 训练和预测
        results = []
        for rolling in rolling_dates:
            parameters = {}
            # 先禁用回测
            parameters[trade_mid + '.__enabled__'] = False
            parameters[train_instruments_mid + '.start_date'] = rolling['train_start_date']
            parameters[train_instruments_mid + '.end_date'] = rolling['train_end_date']
            parameters[test_instruments_mid + '.start_date'] = rolling['test_start_date']
            parameters[test_instruments_mid + '.end_date'] = rolling['test_end_date']
            print('------ rolling_train:', parameters)
            results.append(g.run(parameters))
    
        # 合并预测结果并回测
        mx = M.cached.v3(run=merge_datasources, input_1=[[result[predict_mid].predictions, result[test_instruments_mid].data.read_pickle()['start_date']] for result in results])
        parameters = {}
        parameters['*.__enabled__'] = False
        parameters[trade_mid + '.__enabled__'] = True
        parameters[trade_mid + '.instruments'] = mx.instrument_data
        parameters[trade_mid + '.options_data'] = mx.data
    
        trade = g.run(parameters)
    
        return {'rollings': results, 'trade': trade}
    
    
    m3 = M.hyper_rolling_train.v1(
        run=m3_run_bigquant_run,
        run_now=True,
        bq_graph=g
    )
    
    ------ rolling_train: {'m19.__enabled__': False, 'm4.start_date': '2017-01-03', 'm4.end_date': '2018-01-09', 'm22.start_date': '2018-01-10', 'm22.end_date': '2018-02-08'}
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-8ad44a39151e4d069ac46999f4c5d4ca"}/bigcharts-data-end
    ------ rolling_train: {'m19.__enabled__': False, 'm4.start_date': '2017-02-09', 'm4.end_date': '2018-02-08', 'm22.start_date': '2018-02-09', 'm22.end_date': '2018-03-19'}