克隆策略
In [ ]:
 

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-169:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-169:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-176:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-183:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-190:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-2363:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-403:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-200:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-183:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-200:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-176:input_data","from_node_id":"-169:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-176:data"},{"to_node_id":"-617:input_1","from_node_id":"-176:data"},{"to_node_id":"-190:input_data","from_node_id":"-183:data"},{"to_node_id":"-407:input_data","from_node_id":"-190:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"-2363:model"},{"to_node_id":"-2363:training_ds","from_node_id":"-403:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-407:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -15) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"open_0/mean(close_0,10)\namount_0/mean(amount_0,3)\nta_bbands_lowerband_14_0\nclose_0/mean(close_0,3)\nopen_0/mean(close_0,3)\n(close_0-open_0)/close_1\nts_argmin(low_0,20)\nrank(std(amount_0,15))\nreturn_1/return_5\nturn_0/mean(turn_0,3)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-06-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-169","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-169"},{"name":"features","node_id":"-169"}],"output_ports":[{"name":"data","node_id":"-169"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-176","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-176"},{"name":"features","node_id":"-176"}],"output_ports":[{"name":"data","node_id":"-176"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-183","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-183"},{"name":"features","node_id":"-183"}],"output_ports":[{"name":"data","node_id":"-183"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-190","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-190"},{"name":"features","node_id":"-190"}],"output_ports":[{"name":"data","node_id":"-190"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-200","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n\n context.ranker_prediction = context.options['data'].read_df()\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n context.stock_count = 5\n context.hold_days = 15\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n if context.trading_day_index % context.hold_days != 0:\n return \n \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n \n stock_to_buy = list(ranker_prediction.instrument)[:context.stock_count]\n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = [equity.symbol for equity in context.portfolio.positions]\n # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有\n no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]\n # 需要卖出的股票\n stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]\n \n assert type(stock_to_buy) == list, '格式类型不对!'\n \n \n # 卖出\n for stock in stock_to_sell:\n if data.can_trade(context.symbol(stock)):\n # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,\n # 即卖出全部股票,可参考回测文档\n context.order_target_percent(context.symbol(stock), 0)\n \n # 如果当天没有买入的股票,就返回\n if len(stock_to_buy) == 0:\n return\n\n \n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, len(stock_to_buy))])\n\n # 买入\n c = 0\n for stock in stock_to_buy:\n \n if data.can_trade(context.symbol(stock)):\n # 下单使得某只股票的持仓权重达到weight,因为\n # weight大于0,因此是等权重买入\n context.order_target_percent(context.symbol(stock), context.stock_weights[c])\n c += 1","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"open","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"3000000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-200"},{"name":"options_data","node_id":"-200"},{"name":"history_ds","node_id":"-200"},{"name":"benchmark_ds","node_id":"-200"},{"name":"trading_calendar","node_id":"-200"}],"output_ports":[{"name":"raw_perf","node_id":"-200"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-2363","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-2363"},{"name":"features","node_id":"-2363"},{"name":"test_ds","node_id":"-2363"},{"name":"base_model","node_id":"-2363"}],"output_ports":[{"name":"model","node_id":"-2363"},{"name":"feature_gains","node_id":"-2363"},{"name":"m_lazy_run","node_id":"-2363"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-3355","module_id":"BigQuantSpace.hyper_run.hyper_run-v1","parameters":[{"name":"run","value":"def bigquant_run(bq_graph, inputs):\n factor_pool =['rank(std(amount_0,15))','rank_avg_amount_0/rank_avg_amount_8',\n 'ts_argmin(low_0,20)','rank_return_30','(low_1-close_0)/close_0','ta_bbands_lowerband_14_0',\n 'mean(mf_net_pct_s_0,4)','amount_0/avg_amount_3','return_0/return_5','return_1/return_5',\n 'rank_avg_amount_7/rank_avg_amount_10','ta_sma_10_0/close_0','sqrt(high_0*low_0)-amount_0/volume_0*adjust_factor_0',\n 'avg_turn_15/turn_0','return_10','mf_net_pct_s_0','(close_0-open_0)/close_1',\n 'return_5','return_10','return_20','avg_amount_0/avg_amount_5','avg_amount_5/avg_amount_20',\n 'rank_avg_amount_0/rank_avg_amount_5','rank_avg_amount_5/rank_avg_amount_10','rank_return_0',\n 'rank_return_5','rank_return_10','rank_return_0/rank_return_5','rank_return_5/rank_return_10','pe_ttm_0','close_0/open_0','close_0/mean(close_0,3)',\n 'close_0/mean(close_0,5)','close_0/mean(close_0,15)','close_0/mean(close_0,30)','close_0/mean(close_0,60)',\n 'amount_0/mean(amount_0,3)','amount_0/mean(amount_0,5)','amount_0/mean(amount_0,10)','amount_0/mean(amount_0,15)',\n 'amount_0/mean(amount_0,30)','amount_0/mean(amount_0,60)','turn_0/mean(turn_0,3)','turn_0/mean(turn_0,5)',\n 'turn_0/mean(turn_0,10)','turn_0/mean(turn_0,15)','turn_0/mean(turn_0,30)','turn_0/mean(turn_0,60)','open_0/mean(close_0,3)',\n 'open_0/mean(close_0,5)','open_0/mean(close_0,10)','open_0/mean(close_0,15)','open_0/mean(close_0,30)','open_0/mean(close_0,60)']\n\n batch_num = 10 # 多少组,需要跑多少组策略\n batch_factor = list()\n for i in range(batch_num):\n random.seed(i)\n factor_num = 15 # 每组多少个因子\n batch_factor.append(random.sample(factor_pool, factor_num))\n\n parameters_list = []\n \n for feature in batch_factor:\n parameters = {'m3.features': '\\n'.join(feature)}\n parameters_list.append({'parameters': parameters})\n \n \n def run(parameters):\n try:\n return g.run(parameters)\n except Exception as e:\n print('ERROR --------', e)\n return None\n \n results = T.parallel_map(run, parameters_list, max_workers=10, remote_run=True, silent=True) # 任务数 # 是否远程 # \n\n return results\n","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-3355"},{"name":"input_1","node_id":"-3355"},{"name":"input_2","node_id":"-3355"},{"name":"input_3","node_id":"-3355"}],"output_ports":[{"name":"result","node_id":"-3355"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-403","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-403"},{"name":"features","node_id":"-403"}],"output_ports":[{"name":"data","node_id":"-403"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-407","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-407"},{"name":"features","node_id":"-407"}],"output_ports":[{"name":"data","node_id":"-407"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-617","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.preprocessing import MinMaxScaler\n df = input_1.read()\n \n \n \n \n data_1 = DataSource.write_df(df)\n data_2 = DataSource.write_pickle(df)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-617"},{"name":"input_2","node_id":"-617"},{"name":"input_3","node_id":"-617"}],"output_ports":[{"name":"data_1","node_id":"-617"},{"name":"data_2","node_id":"-617"},{"name":"data_3","node_id":"-617"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='119,59,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='66,181,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='572,-6,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='822,614,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1065,97,200,200'/><node_position Node='-169' Position='381,188,200,200'/><node_position Node='-176' Position='385,280,200,200'/><node_position Node='-183' Position='1078,236,200,200'/><node_position Node='-190' Position='1081,327,200,200'/><node_position Node='-200' Position='820,742,200,200'/><node_position Node='-2363' Position='635,539,200,200'/><node_position Node='-3355' Position='254,-176,200,200'/><node_position Node='-403' Position='376,467,200,200'/><node_position Node='-407' Position='1078,418,200,200'/><node_position Node='-617' Position='553,359,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [4]:
    # 本代码由可视化策略环境自动生成 2021年9月5日 14:28
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m12_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        from sklearn.preprocessing import MinMaxScaler
        df = input_1.read()
        
        
        
        
        data_1 = DataSource.write_df(df)
        data_2 = DataSource.write_pickle(df)
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m12_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
    
        context.ranker_prediction = context.options['data'].read_df()
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        context.stock_count = 5
        context.hold_days = 15
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        
        if context.trading_day_index % context.hold_days != 0:
            return 
        
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
        
        stock_to_buy = list(ranker_prediction.instrument)[:context.stock_count]
        # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表
        stock_hold_now = [equity.symbol for equity in context.portfolio.positions]
        # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有
        no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]
        # 需要卖出的股票
        stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]
        
        assert type(stock_to_buy) == list, '格式类型不对!'
        
        
        # 卖出
        for stock in stock_to_sell:
            if data.can_trade(context.symbol(stock)):
                # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,
                #   即卖出全部股票,可参考回测文档
                context.order_target_percent(context.symbol(stock), 0)
        
        # 如果当天没有买入的股票,就返回
        if len(stock_to_buy) == 0:
            return
    
         
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, len(stock_to_buy))])
    
        # 买入
        c = 0
        for stock in stock_to_buy:
            
            if data.can_trade(context.symbol(stock)):
                # 下单使得某只股票的持仓权重达到weight,因为
                # weight大于0,因此是等权重买入
                context.order_target_percent(context.symbol(stock), context.stock_weights[c])
            c += 1
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        pass
    
    
    g = T.Graph({
    
        'm1': 'M.instruments.v2',
        'm1.start_date': '2018-01-01',
        'm1.end_date': '2021-01-01',
        'm1.market': 'CN_STOCK_A',
        'm1.instrument_list': '',
        'm1.max_count': 0,
    
        'm2': 'M.advanced_auto_labeler.v2',
        'm2.instruments': T.Graph.OutputPort('m1.data'),
        'm2.label_expr': """# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -15) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        'm2.start_date': '',
        'm2.end_date': '',
        'm2.benchmark': '000300.SHA',
        'm2.drop_na_label': True,
        'm2.cast_label_int': True,
    
        'm3': 'M.input_features.v1',
        'm3.features': """open_0/mean(close_0,10)
    amount_0/mean(amount_0,3)
    ta_bbands_lowerband_14_0
    close_0/mean(close_0,3)
    open_0/mean(close_0,3)
    (close_0-open_0)/close_1
    ts_argmin(low_0,20)
    rank(std(amount_0,15))
    return_1/return_5
    turn_0/mean(turn_0,3)""",
    
        'm15': 'M.general_feature_extractor.v7',
        'm15.instruments': T.Graph.OutputPort('m1.data'),
        'm15.features': T.Graph.OutputPort('m3.data'),
        'm15.start_date': '',
        'm15.end_date': '',
        'm15.before_start_days': 0,
    
        'm16': 'M.derived_feature_extractor.v3',
        'm16.input_data': T.Graph.OutputPort('m15.data'),
        'm16.features': T.Graph.OutputPort('m3.data'),
        'm16.date_col': 'date',
        'm16.instrument_col': 'instrument',
        'm16.drop_na': False,
        'm16.remove_extra_columns': False,
    
        'm7': 'M.join.v3',
        'm7.data1': T.Graph.OutputPort('m2.data'),
        'm7.data2': T.Graph.OutputPort('m16.data'),
        'm7.on': 'date,instrument',
        'm7.how': 'inner',
        'm7.sort': False,
    
        'm6': 'M.dropnan.v2',
        'm6.input_data': T.Graph.OutputPort('m7.data'),
    
        'm12': 'M.cached.v3',
        'm12.input_1': T.Graph.OutputPort('m16.data'),
        'm12.run': m12_run_bigquant_run,
        'm12.post_run': m12_post_run_bigquant_run,
        'm12.input_ports': '',
        'm12.params': '{}',
        'm12.output_ports': '',
    
        'm5': 'M.stock_ranker_train.v6',
        'm5.training_ds': T.Graph.OutputPort('m6.data'),
        'm5.features': T.Graph.OutputPort('m3.data'),
        'm5.learning_algorithm': '排序',
        'm5.number_of_leaves': 30,
        'm5.minimum_docs_per_leaf': 1000,
        'm5.number_of_trees': 20,
        'm5.learning_rate': 0.1,
        'm5.max_bins': 1023,
        'm5.feature_fraction': 1,
        'm5.data_row_fraction': 1,
        'm5.ndcg_discount_base': 1,
        'm5.m_lazy_run': False,
    
        'm9': 'M.instruments.v2',
        'm9.start_date': T.live_run_param('trading_date', '2021-01-01'),
        'm9.end_date': T.live_run_param('trading_date', '2021-06-01'),
        'm9.market': 'CN_STOCK_A',
        'm9.instrument_list': '',
        'm9.max_count': 0,
    
        'm17': 'M.general_feature_extractor.v7',
        'm17.instruments': T.Graph.OutputPort('m9.data'),
        'm17.features': T.Graph.OutputPort('m3.data'),
        'm17.start_date': '',
        'm17.end_date': '',
        'm17.before_start_days': 0,
    
        'm18': 'M.derived_feature_extractor.v3',
        'm18.input_data': T.Graph.OutputPort('m17.data'),
        'm18.features': T.Graph.OutputPort('m3.data'),
        'm18.date_col': 'date',
        'm18.instrument_col': 'instrument',
        'm18.drop_na': False,
        'm18.remove_extra_columns': False,
    
        'm10': 'M.dropnan.v2',
        'm10.input_data': T.Graph.OutputPort('m18.data'),
    
        'm8': 'M.stock_ranker_predict.v5',
        'm8.model': T.Graph.OutputPort('m5.model'),
        'm8.data': T.Graph.OutputPort('m10.data'),
        'm8.m_lazy_run': False,
    
        'm19': 'M.trade.v4',
        'm19.instruments': T.Graph.OutputPort('m9.data'),
        'm19.options_data': T.Graph.OutputPort('m8.predictions'),
        'm19.start_date': '',
        'm19.end_date': '',
        'm19.initialize': m19_initialize_bigquant_run,
        'm19.handle_data': m19_handle_data_bigquant_run,
        'm19.prepare': m19_prepare_bigquant_run,
        'm19.volume_limit': 0.025,
        'm19.order_price_field_buy': 'open',
        'm19.order_price_field_sell': 'open',
        'm19.capital_base': 3000000,
        'm19.auto_cancel_non_tradable_orders': True,
        'm19.data_frequency': 'daily',
        'm19.price_type': '后复权',
        'm19.product_type': '股票',
        'm19.plot_charts': True,
        'm19.backtest_only': False,
        'm19.benchmark': '',
    })
    
    # g.run({})
    
    
    def m4_run_bigquant_run(bq_graph, inputs):
        factor_pool =['rank(std(amount_0,15))','rank_avg_amount_0/rank_avg_amount_8',
                        'ts_argmin(low_0,20)','rank_return_30','(low_1-close_0)/close_0','ta_bbands_lowerband_14_0',
                        'mean(mf_net_pct_s_0,4)','amount_0/avg_amount_3','return_0/return_5','return_1/return_5',
                        'rank_avg_amount_7/rank_avg_amount_10','ta_sma_10_0/close_0','sqrt(high_0*low_0)-amount_0/volume_0*adjust_factor_0',
                        'avg_turn_15/turn_0','return_10','mf_net_pct_s_0','(close_0-open_0)/close_1',
                        'return_5','return_10','return_20','avg_amount_0/avg_amount_5','avg_amount_5/avg_amount_20',
                        'rank_avg_amount_0/rank_avg_amount_5','rank_avg_amount_5/rank_avg_amount_10','rank_return_0',
                        'rank_return_5','rank_return_10','rank_return_0/rank_return_5','rank_return_5/rank_return_10','pe_ttm_0','close_0/open_0','close_0/mean(close_0,3)',
                        'close_0/mean(close_0,5)','close_0/mean(close_0,15)','close_0/mean(close_0,30)','close_0/mean(close_0,60)',
                        'amount_0/mean(amount_0,3)','amount_0/mean(amount_0,5)','amount_0/mean(amount_0,10)','amount_0/mean(amount_0,15)',
                        'amount_0/mean(amount_0,30)','amount_0/mean(amount_0,60)','turn_0/mean(turn_0,3)','turn_0/mean(turn_0,5)',
                        'turn_0/mean(turn_0,10)','turn_0/mean(turn_0,15)','turn_0/mean(turn_0,30)','turn_0/mean(turn_0,60)','open_0/mean(close_0,3)',
                        'open_0/mean(close_0,5)','open_0/mean(close_0,10)','open_0/mean(close_0,15)','open_0/mean(close_0,30)','open_0/mean(close_0,60)']
    
        batch_num = 10 # 多少组,需要跑多少组策略
        batch_factor = list()
        for i in range(batch_num):
            random.seed(i)
            factor_num = 15 # 每组多少个因子
            batch_factor.append(random.sample(factor_pool, factor_num))
    
        parameters_list = []
         
        for feature in  batch_factor:
            parameters = {'m3.features': '\n'.join(feature)}
            parameters_list.append({'parameters': parameters})
            
        
        def run(parameters):
            try:
                return g.run(parameters)
            except Exception as e:
                print('ERROR --------', e)
                return None
     
        results = T.parallel_map(run, parameters_list, max_workers=10, remote_run=True, silent=True)  # 任务数  # 是否远程  # 
    
        return results
    
    
    m4 = M.hyper_run.v1(
        run=m4_run_bigquant_run,
        run_now=True,
        bq_graph=g
    )
    
    In [7]:
    m4.result
    
    Out[7]:
    [None, None, None, None, None, None, None, None, None, None]
    In [ ]:
    len(m4.result)
    
    In [ ]:
    # 查看第一个任务返回结果中的预测模块m8的预测结果前5条
    m4.result[0]['m8'].predictions.read_df().head()  # 每一个任务  每一个模块 的输入
    
    In [ ]:
    # 绘制第一个任务返回结果中回测模块的绩效曲线
    m4.result[0]['m19'].display()