{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":false,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\ncal_fun(close, open, benchmark_close,benchmark_open)\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"# import empyrical\n\n#计算函数,用到的列名也需要传入,例如close\n#注意这里的df_total是整个数据集没有经过任何的groupby\ndef cal_fun(df_total, close, open, benchmark_close, benchmark_open):\n def get_label(df):\n #未来5日相对收益率\n relative_r = df.close.shift(-5) / df.open.shift(-1) - df.benchmark_close.shift(-5) / df.benchmark_open.shift(-1)\n #每天的相对收益率\n relative_r_daily = df.close.shift(-1) / df.close - df.benchmark_close.shift(-1) / df.benchmark_close\n #滚动求5日标准差\n std_ = relative_r_daily.rolling(5).apply(lambda x:np.std(x,ddof=1))\n #偏移成未来5日\n std1_ = std_.shift(-5) \n df['label'] = relative_r / std1_\n return df\n \n df1=df_total.groupby([\"instrument\"]).apply(get_label)\n return df1['label']\n\n \nbigquant_run = {\n 'cal_fun':cal_fun\n}\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='206,63,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='61.438018798828125,202.56198120117188,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='766,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='638,561,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,376,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-215' Position='381,188,200,200'/><node_position Node='-222' Position='385,280,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='1037,751,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2023-01-13 15:25:41.790202] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-01-13 15:25:41.898228] INFO: moduleinvoker: instruments.v2 运行完成[0.108043s].
[2023-01-13 15:25:41.917773] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2023-01-13 15:25:45.513009] INFO: 自动标注(股票): 加载历史数据: 2647809 行
[2023-01-13 15:25:45.515323] INFO: 自动标注(股票): 开始标注 ..
[2023-01-13 15:30:18.599465] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[276.681728s].
[2023-01-13 15:30:18.605410] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-01-13 15:30:18.617814] INFO: moduleinvoker: 命中缓存
[2023-01-13 15:30:18.619475] INFO: moduleinvoker: input_features.v1 运行完成[0.014093s].
[2023-01-13 15:30:18.643216] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-01-13 15:30:19.793717] INFO: 基础特征抽取: 年份 2017, 特征行数=193398
[2023-01-13 15:30:22.956131] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2023-01-13 15:30:26.217040] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2023-01-13 15:30:29.354450] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2023-01-13 15:30:29.653950] INFO: 基础特征抽取: 总行数: 2841213
[2023-01-13 15:30:29.773378] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[11.130164s].
[2023-01-13 15:30:29.845521] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-01-13 15:30:36.055120] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.009s
[2023-01-13 15:30:36.065863] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.009s
[2023-01-13 15:30:36.072907] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.005s
[2023-01-13 15:30:36.079429] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.005s
[2023-01-13 15:30:36.085802] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.005s
[2023-01-13 15:30:36.094339] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.006s
[2023-01-13 15:30:37.682013] INFO: derived_feature_extractor: /y_2017, 193398
[2023-01-13 15:30:39.402833] INFO: derived_feature_extractor: /y_2018, 816987
[2023-01-13 15:30:42.580886] INFO: derived_feature_extractor: /y_2019, 884867
[2023-01-13 15:30:45.585678] INFO: derived_feature_extractor: /y_2020, 945961
[2023-01-13 15:30:47.222256] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[17.376734s].
[2023-01-13 15:30:47.233653] INFO: moduleinvoker: join.v3 开始运行..
[2023-01-13 15:30:58.015777] INFO: join: /y_2017, 行数=0/193398, 耗时=1.207632s
[2023-01-13 15:31:01.246268] INFO: join: /y_2018, 行数=813500/816987, 耗时=3.227182s
[2023-01-13 15:31:04.819884] INFO: join: /y_2019, 行数=881275/884867, 耗时=3.563365s
[2023-01-13 15:31:08.782320] INFO: join: /y_2020, 行数=915235/945961, 耗时=3.953729s
[2023-01-13 15:31:08.990506] INFO: join: 最终行数: 2610010
[2023-01-13 15:31:09.020955] INFO: moduleinvoker: join.v3 运行完成[21.787301s].
[2023-01-13 15:31:09.033451] INFO: moduleinvoker: dropnan.v1 开始运行..
[2023-01-13 15:31:09.917248] INFO: dropnan: /y_2017, 0/0
[2023-01-13 15:31:13.487632] INFO: dropnan: /y_2018, 811820/813500
[2023-01-13 15:31:17.400175] INFO: dropnan: /y_2019, 877933/881275
[2023-01-13 15:31:21.570460] INFO: dropnan: /y_2020, 906957/915235
[2023-01-13 15:31:21.747384] INFO: dropnan: 行数: 2596710/2610010
[2023-01-13 15:31:21.763458] INFO: moduleinvoker: dropnan.v1 运行完成[12.730022s].
[2023-01-13 15:31:21.778420] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2023-01-13 15:31:33.239103] INFO: StockRanker: 特征预处理 ..
[2023-01-13 15:31:37.561790] INFO: StockRanker: prepare data: training ..
[2023-01-13 15:31:41.729986] INFO: StockRanker: sort ..
[2023-01-13 15:32:18.834398] INFO: StockRanker训练: 46fcfd14 准备训练: 2596710 行数
[2023-01-13 15:32:18.836739] INFO: StockRanker训练: AI模型训练,将在2596710*13=3375.72万数据上对模型训练进行20轮迭代训练。预计将需要11~21分钟。请耐心等待。
[2023-01-13 15:32:19.019690] INFO: StockRanker训练: 正在训练 ..
[2023-01-13 15:32:19.079115] INFO: StockRanker训练: 任务状态: Pending
[2023-01-13 15:32:29.181844] INFO: StockRanker训练: 任务状态: Running
[2023-01-13 15:33:49.574856] INFO: StockRanker训练: 00:01:17.1327549, finished iteration 1
[2023-01-13 15:33:59.622905] INFO: StockRanker训练: 00:01:29.9220534, finished iteration 2
[2023-01-13 15:34:09.671951] INFO: StockRanker训练: 00:01:44.4315032, finished iteration 3
[2023-01-13 15:34:29.776668] INFO: StockRanker训练: 00:01:57.4891718, finished iteration 4
[2023-01-13 15:34:39.823974] INFO: StockRanker训练: 00:02:10.7513531, finished iteration 5
[2023-01-13 15:34:49.868381] INFO: StockRanker训练: 00:02:23.7491569, finished iteration 6
[2023-01-13 15:35:09.959704] INFO: StockRanker训练: 00:02:37.4567513, finished iteration 7
[2023-01-13 15:35:20.009641] INFO: StockRanker训练: 00:02:50.8703353, finished iteration 8
[2023-01-13 15:35:30.055577] INFO: StockRanker训练: 00:03:04.7352961, finished iteration 9
[2023-01-13 15:35:50.156210] INFO: StockRanker训练: 00:03:18.6872625, finished iteration 10
[2023-01-13 15:36:00.201596] INFO: StockRanker训练: 00:03:32.9490879, finished iteration 11
[2023-01-13 15:36:20.292981] INFO: StockRanker训练: 00:03:49.9002122, finished iteration 12
[2023-01-13 15:36:40.387208] INFO: StockRanker训练: 00:04:07.1885246, finished iteration 13
[2023-01-13 15:36:50.430485] INFO: StockRanker训练: 00:04:23.9096019, finished iteration 14
[2023-01-13 15:37:10.521022] INFO: StockRanker训练: 00:04:40.6990201, finished iteration 15
[2023-01-13 15:37:30.651117] INFO: StockRanker训练: 00:04:57.2849706, finished iteration 16
[2023-01-13 15:37:40.829465] INFO: StockRanker训练: 00:05:14.1747979, finished iteration 17
[2023-01-13 15:38:00.927663] INFO: StockRanker训练: 00:05:31.1354489, finished iteration 18
[2023-01-13 15:38:21.013510] INFO: StockRanker训练: 00:05:48.4229480, finished iteration 19
[2023-01-13 15:38:31.061176] INFO: StockRanker训练: 00:06:05.8066670, finished iteration 20
[2023-01-13 15:38:31.063347] INFO: StockRanker训练: 任务状态: Succeeded
[2023-01-13 15:38:31.232376] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[429.453945s].
[2023-01-13 15:38:31.239764] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-01-13 15:38:31.248038] INFO: moduleinvoker: 命中缓存
[2023-01-13 15:38:31.250031] INFO: moduleinvoker: instruments.v2 运行完成[0.010273s].
[2023-01-13 15:38:31.266270] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-01-13 15:38:31.277361] INFO: moduleinvoker: 命中缓存
[2023-01-13 15:38:31.279351] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.013108s].
[2023-01-13 15:38:31.287584] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-01-13 15:38:31.301941] INFO: moduleinvoker: 命中缓存
[2023-01-13 15:38:31.304148] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.016579s].
[2023-01-13 15:38:31.314703] INFO: moduleinvoker: dropnan.v1 开始运行..
[2023-01-13 15:38:31.325847] INFO: moduleinvoker: 命中缓存
[2023-01-13 15:38:31.327728] INFO: moduleinvoker: dropnan.v1 运行完成[0.013032s].
[2023-01-13 15:38:31.341451] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2023-01-13 15:38:32.254341] INFO: StockRanker预测: /y_2020 ..
[2023-01-13 15:38:34.651232] INFO: StockRanker预测: /y_2021 ..
[2023-01-13 15:38:38.622796] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[7.28134s].
[2023-01-13 15:38:42.510698] INFO: moduleinvoker: backtest.v8 开始运行..
[2023-01-13 15:38:42.518988] INFO: backtest: biglearning backtest:V8.6.3
[2023-01-13 15:38:42.521379] INFO: backtest: product_type:stock by specified
[2023-01-13 15:38:42.587447] INFO: moduleinvoker: cached.v2 开始运行..
[2023-01-13 15:38:42.599660] INFO: moduleinvoker: 命中缓存
[2023-01-13 15:38:42.601553] INFO: moduleinvoker: cached.v2 运行完成[0.014135s].
[2023-01-13 15:38:53.785010] INFO: backtest: algo history_data=DataSource(a929ac626e724fc5a53ed51cf775e582T)
[2023-01-13 15:38:53.787357] INFO: algo: TradingAlgorithm V1.8.9
[2023-01-13 15:38:56.564367] INFO: algo: trading transform...
[2023-01-13 15:39:05.487764] INFO: Performance: Simulated 243 trading days out of 243.
[2023-01-13 15:39:05.489580] INFO: Performance: first open: 2021-01-04 09:30:00+00:00
[2023-01-13 15:39:05.491488] INFO: Performance: last close: 2021-12-31 15:00:00+00:00
[2023-01-13 15:39:10.903798] INFO: moduleinvoker: backtest.v8 运行完成[28.393112s].
[2023-01-13 15:39:10.905686] INFO: moduleinvoker: trade.v4 运行完成[32.262227s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-3177bc8054994b9eb8912feb004e9d77"}/bigcharts-data-end
- 收益率66.31%
- 年化收益率69.47%
- 基准收益率-5.2%
- 阿尔法0.74
- 贝塔0.47
- 夏普比率2.29
- 胜率0.54
- 盈亏比1.28
- 收益波动率22.93%
- 信息比率0.16
- 最大回撤9.96%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-8f1ba6a575804b5785f6911b6c6ccc89"}/bigcharts-data-end