{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-773:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-778:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3895:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3984:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-7618:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-7623:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-6044:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-6044:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-141:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-3984:input_1","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-2431:input_2","from_node_id":"-129:data"},{"to_node_id":"-778:input_1","from_node_id":"-129:data"},{"to_node_id":"-3880:inputs","from_node_id":"-160:data"},{"to_node_id":"-1452:inputs","from_node_id":"-160:data"},{"to_node_id":"-2431:input_1","from_node_id":"-1540:data"},{"to_node_id":"-141:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-773:data"},{"to_node_id":"-7623:input_data","from_node_id":"-778:data"},{"to_node_id":"-1540:input_data","from_node_id":"-251:data"},{"to_node_id":"-759:input_model","from_node_id":"-3880:data"},{"to_node_id":"-759:training_data","from_node_id":"-3895:data_1"},{"to_node_id":"-759:validation_data","from_node_id":"-3895:data_2"},{"to_node_id":"-7618:input_data","from_node_id":"-3984:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-7618:data"},{"to_node_id":"-251:input_data","from_node_id":"-7623:data"},{"to_node_id":"-3895:input_1","from_node_id":"-6044:data"},{"to_node_id":"-1540:trained_model","from_node_id":"-759:data"},{"to_node_id":"-1557:inputs","from_node_id":"-1452:data"},{"to_node_id":"-55285:inputs","from_node_id":"-1557:data"},{"to_node_id":"-1664:inputs","from_node_id":"-1632:data"},{"to_node_id":"-1919:input2","from_node_id":"-1632:data"},{"to_node_id":"-1700:inputs","from_node_id":"-1664:data"},{"to_node_id":"-1732:inputs","from_node_id":"-1700:data"},{"to_node_id":"-1768:inputs","from_node_id":"-1732:data"},{"to_node_id":"-1301:inputs","from_node_id":"-1768:data"},{"to_node_id":"-3880:outputs","from_node_id":"-1818:data"},{"to_node_id":"-2388:inputs","from_node_id":"-1919:data"},{"to_node_id":"-1818:inputs","from_node_id":"-1910:data"},{"to_node_id":"-49728:inputs","from_node_id":"-26538:data"},{"to_node_id":"-26538:inputs","from_node_id":"-8291:data"},{"to_node_id":"-55314:inputs","from_node_id":"-8323:data"},{"to_node_id":"-1330:inputs","from_node_id":"-1301:data"},{"to_node_id":"-1919:input1","from_node_id":"-1330:data"},{"to_node_id":"-1910:inputs","from_node_id":"-2388:data"},{"to_node_id":"-8323:inputs","from_node_id":"-49728:data"},{"to_node_id":"-8291:inputs","from_node_id":"-55285:data"},{"to_node_id":"-1632:inputs","from_node_id":"-55314:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2012-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2017-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"\n002674.SZA\n603066.SHA\n000536.SZA\n002374.SZA\n002537.SZA\n002542.SZA\n002207.SZA\n002272.SZA\n002277.SZA\n600794.SHA\n600793.SHA\n600172.SHA\n600428.SHA\n002575.SZA\n603022.SHA\n001217.SZA\n002654.SZA\n002587.SZA\n000059.SZA\n002868.SZA\n","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1) - 1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0\nopen_0\nhigh_0\nlow_0 \nturn_0 \nreturn_0\namount_0\n\nclose_1\nopen_1\nhigh_1\nlow_1\nturn_1\nreturn_1\namount_1\n\n \nclose_2\nopen_2\nhigh_2\nlow_2\nturn_2\namount_2\nreturn_2\n \nclose_3\nopen_3\nhigh_3\nlow_3\nturn_3\namount_3\nreturn_3\n \nclose_4\nopen_4\nhigh_4\nlow_4\nturn_4\namount_4\nreturn_4\n \nmean(close_0, 5)\nmean(open_0, 5)\nmean(high_0, 5)\nmean(low_0, 5)\nmean(turn_0, 5)\nmean(amount_0, 5)\nmean(return_0, 5)\n \nts_max(close_0, 5)\nts_max(open_0, 5)\nts_max(high_0, 5)\nts_max(low_0, 5)\nts_max(turn_0, 5)\nts_max(amount_0, 5)\nts_max(return_0, 5)\n \nts_min(close_0, 5)\nts_min(open_0, 5)\nts_min(high_0, 5)\nts_min(low_0, 5)\nts_min(turn_0, 5)\nts_min(amount_0, 5)\nts_min(return_0, 5) \n \nstd(close_0, 5)\nstd(open_0, 5)\nstd(high_0, 5)\nstd(low_0, 5)\nstd(turn_0, 5)\nstd(amount_0, 5)\nstd(return_0, 5)\n \nts_rank(close_0, 5)\nts_rank(open_0, 5)\nts_rank(high_0, 5)\nts_rank(low_0, 5)\nts_rank(turn_0, 5)\nts_rank(amount_0, 5)\nts_rank(return_0, 5)\n \ndecay_linear(close_0, 5)\ndecay_linear(open_0, 5)\ndecay_linear(high_0, 5)\ndecay_linear(low_0, 5)\ndecay_linear(turn_0, 5)\ndecay_linear(amount_0, 5)\ndecay_linear(return_0, 5)\n \ncorrelation(volume_0, return_0, 5)\ncorrelation(volume_0, high_0, 5)\ncorrelation(volume_0, low_0, 5)\ncorrelation(volume_0, close_0, 5)\ncorrelation(volume_0, open_0, 5)\ncorrelation(volume_0, turn_0, 5)\n \ncorrelation(return_0, high_0, 5)\ncorrelation(return_0, low_0, 5)\ncorrelation(return_0, close_0, 5)\ncorrelation(return_0, open_0, 5)\ncorrelation(return_0, turn_0, 5)\n \ncorrelation(high_0, low_0, 5)\ncorrelation(high_0, close_0, 5)\ncorrelation(high_0, open_0, 5)\ncorrelation(high_0, turn_0, 5)\n \ncorrelation(low_0, close_0, 5)\ncorrelation(low_0, open_0, 5)\ncorrelation(low_0, turn_0, 5)\n \ncorrelation(close_0, open_0, 5)\ncorrelation(close_0, turn_0, 5)\ncorrelation(open_0, turn_0, 5)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-8-15","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"\n002674.SZA\n603066.SHA\n000536.SZA\n002374.SZA\n002537.SZA\n002542.SZA\n002207.SZA\n002272.SZA\n002277.SZA\n600794.SHA\n600793.SHA\n600172.SHA\n600428.SHA\n002575.SZA\n603022.SHA\n001217.SZA\n002654.SZA\n002587.SZA\n000059.SZA\n002868.SZA\n","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0003, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 20\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.05\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0.025","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"98,1","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-1540","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"512","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"1","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-1540"},{"name":"input_data","node_id":"-1540"}],"output_ports":[{"name":"data","node_id":"-1540"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-773","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-773"},{"name":"input_2","node_id":"-773"}],"output_ports":[{"name":"data","node_id":"-773"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-778","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-778"},{"name":"input_2","node_id":"-778"}],"output_ports":[{"name":"data","node_id":"-778"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"1","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"5","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-3880","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-3880"},{"name":"outputs","node_id":"-3880"}],"output_ports":[{"name":"data","node_id":"-3880"}],"cacheable":false,"seq_num":34,"comment":"","comment_collapsed":true},{"node_id":"-3895","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n data = input_1.read()\n x_train, x_val, y_train, y_val = train_test_split(data[\"x\"], data['y'], shuffle=False, test_size=0.2)\n data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})\n data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3895"},{"name":"input_2","node_id":"-3895"},{"name":"input_3","node_id":"-3895"}],"output_ports":[{"name":"data_1","node_id":"-3895"},{"name":"data_2","node_id":"-3895"},{"name":"data_3","node_id":"-3895"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-3984","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3984"},{"name":"input_2","node_id":"-3984"}],"output_ports":[{"name":"data","node_id":"-3984"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-7618","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-7618"},{"name":"features","node_id":"-7618"}],"output_ports":[{"name":"data","node_id":"-7618"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-7623","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-7623"},{"name":"features","node_id":"-7623"}],"output_ports":[{"name":"data","node_id":"-7623"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-6044","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"1","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"5","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-6044"},{"name":"features","node_id":"-6044"}],"output_ports":[{"name":"data","node_id":"-6044"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-759","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"自定义","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"optimizers.Adam(lr=0.001)","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"from tensorflow.keras import losses \nbigquant_run=losses.huber","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"512","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"5","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"from tensorflow.keras.callbacks import EarlyStopping\n\nbigquant_run=EarlyStopping(monitor='val_mse', min_delta=0.001, patience=3)","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = { \n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"1","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-759"},{"name":"training_data","node_id":"-759"},{"name":"validation_data","node_id":"-759"}],"output_ports":[{"name":"data","node_id":"-759"}],"cacheable":false,"seq_num":35,"comment":"","comment_collapsed":true},{"node_id":"-1452","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1452"}],"output_ports":[{"name":"data","node_id":"-1452"}],"cacheable":false,"seq_num":37,"comment":"","comment_collapsed":true},{"node_id":"-1557","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"128","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1557"}],"output_ports":[{"name":"data","node_id":"-1557"}],"cacheable":false,"seq_num":43,"comment":"","comment_collapsed":true},{"node_id":"-1632","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"256","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1632"}],"output_ports":[{"name":"data","node_id":"-1632"}],"cacheable":false,"seq_num":47,"comment":"","comment_collapsed":true},{"node_id":"-1664","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1664"}],"output_ports":[{"name":"data","node_id":"-1664"}],"cacheable":false,"seq_num":48,"comment":"","comment_collapsed":true},{"node_id":"-1700","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"256","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1700"}],"output_ports":[{"name":"data","node_id":"-1700"}],"cacheable":false,"seq_num":50,"comment":"","comment_collapsed":true},{"node_id":"-1732","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1732"}],"output_ports":[{"name":"data","node_id":"-1732"}],"cacheable":false,"seq_num":51,"comment":"","comment_collapsed":true},{"node_id":"-1768","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"256","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1768"}],"output_ports":[{"name":"data","node_id":"-1768"}],"cacheable":false,"seq_num":53,"comment":"","comment_collapsed":true},{"node_id":"-1818","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1818"}],"output_ports":[{"name":"data","node_id":"-1818"}],"cacheable":false,"seq_num":57,"comment":"","comment_collapsed":true},{"node_id":"-1919","module_id":"BigQuantSpace.dl_layer_add.dl_layer_add-v1","parameters":[{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input1","node_id":"-1919"},{"name":"input2","node_id":"-1919"},{"name":"input3","node_id":"-1919"}],"output_ports":[{"name":"data","node_id":"-1919"}],"cacheable":false,"seq_num":62,"comment":"","comment_collapsed":true},{"node_id":"-1910","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.15","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1910"}],"output_ports":[{"name":"data","node_id":"-1910"}],"cacheable":false,"seq_num":61,"comment":"","comment_collapsed":true},{"node_id":"-26538","module_id":"BigQuantSpace.dl_layer_maxpooling1d.dl_layer_maxpooling1d-v1","parameters":[{"name":"pool_size","value":"2","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-26538"}],"output_ports":[{"name":"data","node_id":"-26538"}],"cacheable":false,"seq_num":41,"comment":"","comment_collapsed":true},{"node_id":"-8291","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"128","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-8291"}],"output_ports":[{"name":"data","node_id":"-8291"}],"cacheable":false,"seq_num":44,"comment":"","comment_collapsed":true},{"node_id":"-8323","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"256","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-8323"}],"output_ports":[{"name":"data","node_id":"-8323"}],"cacheable":false,"seq_num":45,"comment":"","comment_collapsed":true},{"node_id":"-1301","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1301"}],"output_ports":[{"name":"data","node_id":"-1301"}],"cacheable":false,"seq_num":46,"comment":"","comment_collapsed":true},{"node_id":"-1330","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"256","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1330"}],"output_ports":[{"name":"data","node_id":"-1330"}],"cacheable":false,"seq_num":49,"comment":"","comment_collapsed":true},{"node_id":"-2388","module_id":"BigQuantSpace.dl_layer_globalmaxpooling1d.dl_layer_globalmaxpooling1d-v1","parameters":[{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-2388"}],"output_ports":[{"name":"data","node_id":"-2388"}],"cacheable":false,"seq_num":38,"comment":"","comment_collapsed":true},{"node_id":"-49728","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.15","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-49728"}],"output_ports":[{"name":"data","node_id":"-49728"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-55285","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-55285"}],"output_ports":[{"name":"data","node_id":"-55285"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-55314","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-55314"}],"output_ports":[{"name":"data","node_id":"-55314"}],"cacheable":false,"seq_num":10,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='116,-155,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='-34,-17,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='561,-298,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='103,370,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='814,-61,200,200'/><node_position Node='-106' Position='290,-52,200,200'/><node_position Node='-113' Position='290,80,200,200'/><node_position Node='-122' Position='821,46,200,200'/><node_position Node='-129' Position='822,198,200,200'/><node_position Node='-141' Position='118,1124,200,200'/><node_position Node='-160' Position='-472,-582,200,200'/><node_position Node='-1540' Position='-134,924,200,200'/><node_position Node='-2431' Position='-1,1015,200,200'/><node_position Node='-773' Position='-33,55,200,200'/><node_position Node='-778' Position='820,277,200,200'/><node_position Node='-251' Position='820,411,200,200'/><node_position Node='-3880' Position='-423,741,200,200'/><node_position Node='-3895' Position='101,503,200,200'/><node_position Node='-3984' Position='291,167,200,200'/><node_position Node='-7618' Position='292,233,200,200'/><node_position Node='-7623' Position='820,343,200,200'/><node_position Node='-6044' Position='103,439,200,200'/><node_position Node='-759' Position='-279.23484802246094,838,200,200'/><node_position Node='-1452' Position='-643,-474,200,200'/><node_position Node='-1557' Position='-644,-399,200,200'/><node_position Node='-1632' Position='-643,120,200,200'/><node_position Node='-1664' Position='-959,203,200,200'/><node_position Node='-1700' Position='-960,272,200,200'/><node_position Node='-1732' Position='-960,346,200,200'/><node_position Node='-1768' Position='-955,411,200,200'/><node_position Node='-1818' Position='-635,565,200,200'/><node_position Node='-1919' Position='-636,320,200,200'/><node_position Node='-1910' Position='-637,482,200,200'/><node_position Node='-26538' Position='-643,-182,200,200'/><node_position Node='-8291' Position='-644,-254,200,200'/><node_position Node='-8323' Position='-643,-46,200,200'/><node_position Node='-1301' Position='-956,497,200,200'/><node_position Node='-1330' Position='-953,569,200,200'/><node_position Node='-2388' Position='-637,398,200,200'/><node_position Node='-49728' Position='-642,-119,200,200'/><node_position Node='-55285' Position='-645,-331,200,200'/><node_position Node='-55314' Position='-643,36,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-09-09 15:05:01.633190] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-09-09 15:05:01.699773] INFO: moduleinvoker: instruments.v2 运行完成[0.066615s].
[2022-09-09 15:05:01.723887] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-09-09 15:05:03.838343] INFO: 自动标注(股票): 加载历史数据: 22243 行
[2022-09-09 15:05:03.840745] INFO: 自动标注(股票): 开始标注 ..
[2022-09-09 15:05:05.295059] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[3.57117s].
[2022-09-09 15:05:05.396967] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-09-09 15:05:06.847458] INFO: moduleinvoker: standardlize.v8 运行完成[1.45049s].
[2022-09-09 15:05:06.863246] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-09-09 15:05:06.973970] INFO: moduleinvoker: 命中缓存
[2022-09-09 15:05:06.976199] INFO: moduleinvoker: input_features.v1 运行完成[0.112969s].
[2022-09-09 15:05:07.021769] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-09-09 15:05:08.506891] INFO: 基础特征抽取: 年份 2011, 特征行数=97
[2022-09-09 15:05:10.197038] INFO: 基础特征抽取: 年份 2012, 特征行数=3708
[2022-09-09 15:05:11.655450] INFO: 基础特征抽取: 年份 2013, 特征行数=3743
[2022-09-09 15:05:13.196941] INFO: 基础特征抽取: 年份 2014, 特征行数=3478
[2022-09-09 15:05:14.816694] INFO: 基础特征抽取: 年份 2015, 特征行数=3233
[2022-09-09 15:05:16.422443] INFO: 基础特征抽取: 年份 2016, 特征行数=3787
[2022-09-09 15:05:18.380109] INFO: 基础特征抽取: 年份 2017, 特征行数=4294
[2022-09-09 15:05:18.436223] INFO: 基础特征抽取: 总行数: 22340
[2022-09-09 15:05:18.441699] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[11.419941s].
[2022-09-09 15:05:18.553418] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-09-09 15:05:18.952963] INFO: derived_feature_extractor: 提取完成 mean(close_0, 5), 0.016s
[2022-09-09 15:05:18.973738] INFO: derived_feature_extractor: 提取完成 mean(low_0, 5), 0.018s
[2022-09-09 15:05:18.993689] INFO: derived_feature_extractor: 提取完成 mean(open_0, 5), 0.018s
[2022-09-09 15:05:19.013780] INFO: derived_feature_extractor: 提取完成 mean(high_0, 5), 0.018s
[2022-09-09 15:05:19.033996] INFO: derived_feature_extractor: 提取完成 mean(turn_0, 5), 0.018s
[2022-09-09 15:05:19.054659] INFO: derived_feature_extractor: 提取完成 mean(amount_0, 5), 0.018s
[2022-09-09 15:05:19.075435] INFO: derived_feature_extractor: 提取完成 mean(return_0, 5), 0.019s
[2022-09-09 15:05:19.096381] INFO: derived_feature_extractor: 提取完成 ts_max(close_0, 5), 0.018s
[2022-09-09 15:05:19.113913] INFO: derived_feature_extractor: 提取完成 ts_max(low_0, 5), 0.015s
[2022-09-09 15:05:19.133828] INFO: derived_feature_extractor: 提取完成 ts_max(open_0, 5), 0.018s
[2022-09-09 15:05:19.155122] INFO: derived_feature_extractor: 提取完成 ts_max(high_0, 5), 0.019s
[2022-09-09 15:05:19.173544] INFO: derived_feature_extractor: 提取完成 ts_max(turn_0, 5), 0.016s
[2022-09-09 15:05:19.190478] INFO: derived_feature_extractor: 提取完成 ts_max(amount_0, 5), 0.015s
[2022-09-09 15:05:19.209669] INFO: derived_feature_extractor: 提取完成 ts_max(return_0, 5), 0.017s
[2022-09-09 15:05:19.233632] INFO: derived_feature_extractor: 提取完成 ts_min(close_0, 5), 0.022s
[2022-09-09 15:05:19.250799] INFO: derived_feature_extractor: 提取完成 ts_min(low_0, 5), 0.015s
[2022-09-09 15:05:19.265627] INFO: derived_feature_extractor: 提取完成 ts_min(open_0, 5), 0.013s
[2022-09-09 15:05:19.279560] INFO: derived_feature_extractor: 提取完成 ts_min(high_0, 5), 0.012s
[2022-09-09 15:05:19.294065] INFO: derived_feature_extractor: 提取完成 ts_min(turn_0, 5), 0.013s
[2022-09-09 15:05:19.311053] INFO: derived_feature_extractor: 提取完成 ts_min(amount_0, 5), 0.015s
[2022-09-09 15:05:19.326245] INFO: derived_feature_extractor: 提取完成 ts_min(return_0, 5), 0.013s
[2022-09-09 15:05:19.343280] INFO: derived_feature_extractor: 提取完成 std(close_0, 5), 0.015s
[2022-09-09 15:05:19.366915] INFO: derived_feature_extractor: 提取完成 std(low_0, 5), 0.021s
[2022-09-09 15:05:19.389620] INFO: derived_feature_extractor: 提取完成 std(open_0, 5), 0.020s
[2022-09-09 15:05:19.411226] INFO: derived_feature_extractor: 提取完成 std(high_0, 5), 0.019s
[2022-09-09 15:05:19.431937] INFO: derived_feature_extractor: 提取完成 std(turn_0, 5), 0.019s
[2022-09-09 15:05:19.452820] INFO: derived_feature_extractor: 提取完成 std(amount_0, 5), 0.019s
[2022-09-09 15:05:19.473645] INFO: derived_feature_extractor: 提取完成 std(return_0, 5), 0.019s
[2022-09-09 15:05:19.574740] INFO: derived_feature_extractor: 提取完成 ts_rank(close_0, 5), 0.099s
[2022-09-09 15:05:19.646955] INFO: derived_feature_extractor: 提取完成 ts_rank(low_0, 5), 0.070s
[2022-09-09 15:05:19.742742] INFO: derived_feature_extractor: 提取完成 ts_rank(open_0, 5), 0.094s
[2022-09-09 15:05:19.810196] INFO: derived_feature_extractor: 提取完成 ts_rank(high_0, 5), 0.066s
[2022-09-09 15:05:19.879814] INFO: derived_feature_extractor: 提取完成 ts_rank(turn_0, 5), 0.068s
[2022-09-09 15:05:19.957537] INFO: derived_feature_extractor: 提取完成 ts_rank(amount_0, 5), 0.076s
[2022-09-09 15:05:20.022170] INFO: derived_feature_extractor: 提取完成 ts_rank(return_0, 5), 0.063s
[2022-09-09 15:05:20.120240] INFO: derived_feature_extractor: 提取完成 decay_linear(close_0, 5), 0.096s
[2022-09-09 15:05:20.198663] INFO: derived_feature_extractor: 提取完成 decay_linear(low_0, 5), 0.076s
[2022-09-09 15:05:20.283684] INFO: derived_feature_extractor: 提取完成 decay_linear(open_0, 5), 0.083s
[2022-09-09 15:05:20.334895] INFO: derived_feature_extractor: 提取完成 decay_linear(high_0, 5), 0.049s
[2022-09-09 15:05:20.389452] INFO: derived_feature_extractor: 提取完成 decay_linear(turn_0, 5), 0.053s
[2022-09-09 15:05:20.443051] INFO: derived_feature_extractor: 提取完成 decay_linear(amount_0, 5), 0.051s
[2022-09-09 15:05:20.501889] INFO: derived_feature_extractor: 提取完成 decay_linear(return_0, 5), 0.057s
[2022-09-09 15:05:20.686915] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, return_0, 5), 0.183s
[2022-09-09 15:05:20.863499] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, high_0, 5), 0.174s
[2022-09-09 15:05:21.056319] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, low_0, 5), 0.190s
[2022-09-09 15:05:21.205092] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, close_0, 5), 0.145s
[2022-09-09 15:05:21.362626] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, open_0, 5), 0.155s
[2022-09-09 15:05:21.522201] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, turn_0, 5), 0.157s
[2022-09-09 15:05:21.683066] INFO: derived_feature_extractor: 提取完成 correlation(return_0, high_0, 5), 0.158s
[2022-09-09 15:05:21.819023] INFO: derived_feature_extractor: 提取完成 correlation(return_0, low_0, 5), 0.134s
[2022-09-09 15:05:21.972440] INFO: derived_feature_extractor: 提取完成 correlation(return_0, close_0, 5), 0.152s
[2022-09-09 15:05:22.108705] INFO: derived_feature_extractor: 提取完成 correlation(return_0, open_0, 5), 0.134s
[2022-09-09 15:05:22.247168] INFO: derived_feature_extractor: 提取完成 correlation(return_0, turn_0, 5), 0.137s
[2022-09-09 15:05:22.378058] INFO: derived_feature_extractor: 提取完成 correlation(high_0, low_0, 5), 0.129s
[2022-09-09 15:05:22.526435] INFO: derived_feature_extractor: 提取完成 correlation(high_0, close_0, 5), 0.147s
[2022-09-09 15:05:22.685714] INFO: derived_feature_extractor: 提取完成 correlation(high_0, open_0, 5), 0.158s
[2022-09-09 15:05:22.928330] INFO: derived_feature_extractor: 提取完成 correlation(high_0, turn_0, 5), 0.239s
[2022-09-09 15:05:23.107360] INFO: derived_feature_extractor: 提取完成 correlation(low_0, close_0, 5), 0.177s
[2022-09-09 15:05:23.292033] INFO: derived_feature_extractor: 提取完成 correlation(low_0, open_0, 5), 0.183s
[2022-09-09 15:05:23.446773] INFO: derived_feature_extractor: 提取完成 correlation(low_0, turn_0, 5), 0.153s
[2022-09-09 15:05:23.594631] INFO: derived_feature_extractor: 提取完成 correlation(close_0, open_0, 5), 0.146s
[2022-09-09 15:05:23.746153] INFO: derived_feature_extractor: 提取完成 correlation(close_0, turn_0, 5), 0.149s
[2022-09-09 15:05:23.910125] INFO: derived_feature_extractor: 提取完成 correlation(open_0, turn_0, 5), 0.162s
[2022-09-09 15:05:24.036703] INFO: derived_feature_extractor: /y_2011, 97
[2022-09-09 15:05:24.141338] INFO: derived_feature_extractor: /y_2012, 3708
[2022-09-09 15:05:24.273456] INFO: derived_feature_extractor: /y_2013, 3743
[2022-09-09 15:05:24.374467] INFO: derived_feature_extractor: /y_2014, 3478
[2022-09-09 15:05:24.491013] INFO: derived_feature_extractor: /y_2015, 3233
[2022-09-09 15:05:24.677396] INFO: derived_feature_extractor: /y_2016, 3787
[2022-09-09 15:05:24.814080] INFO: derived_feature_extractor: /y_2017, 4294
[2022-09-09 15:05:24.963312] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[6.409863s].
[2022-09-09 15:05:24.974762] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-09-09 15:07:06.144324] INFO: moduleinvoker: standardlize.v8 运行完成[101.169531s].
[2022-09-09 15:07:06.155427] INFO: moduleinvoker: fillnan.v1 开始运行..
[2022-09-09 15:07:06.529339] INFO: moduleinvoker: fillnan.v1 运行完成[0.373882s].
[2022-09-09 15:07:06.540064] INFO: moduleinvoker: join.v3 开始运行..
[2022-09-09 15:07:07.029134] INFO: join: /data, 行数=22012/22257, 耗时=0.321142s
[2022-09-09 15:07:07.087230] INFO: join: 最终行数: 22012
[2022-09-09 15:07:07.096799] INFO: moduleinvoker: join.v3 运行完成[0.556723s].
[2022-09-09 15:07:07.119420] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-09-09 15:07:07.369722] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.25031s].
[2022-09-09 15:07:07.386808] INFO: moduleinvoker: cached.v3 开始运行..
[2022-09-09 15:07:07.604644] INFO: moduleinvoker: cached.v3 运行完成[0.217831s].
[2022-09-09 15:07:07.611699] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-09-09 15:07:07.633957] INFO: moduleinvoker: instruments.v2 运行完成[0.022255s].
[2022-09-09 15:07:07.649461] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-09-09 15:07:09.579723] INFO: 基础特征抽取: 年份 2017, 特征行数=102
[2022-09-09 15:07:11.906394] INFO: 基础特征抽取: 年份 2018, 特征行数=4375
[2022-09-09 15:07:14.267312] INFO: 基础特征抽取: 年份 2019, 特征行数=4625
[2022-09-09 15:07:16.673200] INFO: 基础特征抽取: 年份 2020, 特征行数=4611
[2022-09-09 15:07:19.416153] INFO: 基础特征抽取: 年份 2021, 特征行数=4679
[2022-09-09 15:07:21.579574] INFO: 基础特征抽取: 年份 2022, 特征行数=2970
[2022-09-09 15:07:21.617205] INFO: 基础特征抽取: 总行数: 21362
[2022-09-09 15:07:21.623507] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[13.974051s].
[2022-09-09 15:07:21.633963] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-09-09 15:07:22.036248] INFO: derived_feature_extractor: 提取完成 mean(close_0, 5), 0.013s
[2022-09-09 15:07:22.051350] INFO: derived_feature_extractor: 提取完成 mean(low_0, 5), 0.013s
[2022-09-09 15:07:22.067459] INFO: derived_feature_extractor: 提取完成 mean(open_0, 5), 0.014s
[2022-09-09 15:07:22.082328] INFO: derived_feature_extractor: 提取完成 mean(high_0, 5), 0.013s
[2022-09-09 15:07:22.102851] INFO: derived_feature_extractor: 提取完成 mean(turn_0, 5), 0.018s
[2022-09-09 15:07:22.120924] INFO: derived_feature_extractor: 提取完成 mean(amount_0, 5), 0.016s
[2022-09-09 15:07:22.138698] INFO: derived_feature_extractor: 提取完成 mean(return_0, 5), 0.016s
[2022-09-09 15:07:22.156701] INFO: derived_feature_extractor: 提取完成 ts_max(close_0, 5), 0.016s
[2022-09-09 15:07:22.173740] INFO: derived_feature_extractor: 提取完成 ts_max(low_0, 5), 0.015s
[2022-09-09 15:07:22.191051] INFO: derived_feature_extractor: 提取完成 ts_max(open_0, 5), 0.015s
[2022-09-09 15:07:22.207407] INFO: derived_feature_extractor: 提取完成 ts_max(high_0, 5), 0.015s
[2022-09-09 15:07:22.224662] INFO: derived_feature_extractor: 提取完成 ts_max(turn_0, 5), 0.016s
[2022-09-09 15:07:22.242083] INFO: derived_feature_extractor: 提取完成 ts_max(amount_0, 5), 0.016s
[2022-09-09 15:07:22.259026] INFO: derived_feature_extractor: 提取完成 ts_max(return_0, 5), 0.015s
[2022-09-09 15:07:22.275235] INFO: derived_feature_extractor: 提取完成 ts_min(close_0, 5), 0.014s
[2022-09-09 15:07:22.294679] INFO: derived_feature_extractor: 提取完成 ts_min(low_0, 5), 0.018s
[2022-09-09 15:07:22.317203] INFO: derived_feature_extractor: 提取完成 ts_min(open_0, 5), 0.021s
[2022-09-09 15:07:22.334075] INFO: derived_feature_extractor: 提取完成 ts_min(high_0, 5), 0.015s
[2022-09-09 15:07:22.352087] INFO: derived_feature_extractor: 提取完成 ts_min(turn_0, 5), 0.016s
[2022-09-09 15:07:22.371632] INFO: derived_feature_extractor: 提取完成 ts_min(amount_0, 5), 0.018s
[2022-09-09 15:07:22.389486] INFO: derived_feature_extractor: 提取完成 ts_min(return_0, 5), 0.016s
[2022-09-09 15:07:22.408543] INFO: derived_feature_extractor: 提取完成 std(close_0, 5), 0.017s
[2022-09-09 15:07:22.431012] INFO: derived_feature_extractor: 提取完成 std(low_0, 5), 0.020s
[2022-09-09 15:07:22.448247] INFO: derived_feature_extractor: 提取完成 std(open_0, 5), 0.015s
[2022-09-09 15:07:22.464222] INFO: derived_feature_extractor: 提取完成 std(high_0, 5), 0.014s
[2022-09-09 15:07:22.481489] INFO: derived_feature_extractor: 提取完成 std(turn_0, 5), 0.015s
[2022-09-09 15:07:22.499054] INFO: derived_feature_extractor: 提取完成 std(amount_0, 5), 0.015s
[2022-09-09 15:07:22.518921] INFO: derived_feature_extractor: 提取完成 std(return_0, 5), 0.018s
[2022-09-09 15:07:22.587937] INFO: derived_feature_extractor: 提取完成 ts_rank(close_0, 5), 0.067s
[2022-09-09 15:07:22.666556] INFO: derived_feature_extractor: 提取完成 ts_rank(low_0, 5), 0.077s
[2022-09-09 15:07:22.741410] INFO: derived_feature_extractor: 提取完成 ts_rank(open_0, 5), 0.073s
[2022-09-09 15:07:22.813062] INFO: derived_feature_extractor: 提取完成 ts_rank(high_0, 5), 0.070s
[2022-09-09 15:07:22.889939] INFO: derived_feature_extractor: 提取完成 ts_rank(turn_0, 5), 0.075s
[2022-09-09 15:07:22.973611] INFO: derived_feature_extractor: 提取完成 ts_rank(amount_0, 5), 0.082s
[2022-09-09 15:07:23.059134] INFO: derived_feature_extractor: 提取完成 ts_rank(return_0, 5), 0.084s
[2022-09-09 15:07:23.129274] INFO: derived_feature_extractor: 提取完成 decay_linear(close_0, 5), 0.068s
[2022-09-09 15:07:23.198195] INFO: derived_feature_extractor: 提取完成 decay_linear(low_0, 5), 0.067s
[2022-09-09 15:07:23.262363] INFO: derived_feature_extractor: 提取完成 decay_linear(open_0, 5), 0.060s
[2022-09-09 15:07:23.332103] INFO: derived_feature_extractor: 提取完成 decay_linear(high_0, 5), 0.067s
[2022-09-09 15:07:23.409648] INFO: derived_feature_extractor: 提取完成 decay_linear(turn_0, 5), 0.075s
[2022-09-09 15:07:23.479736] INFO: derived_feature_extractor: 提取完成 decay_linear(amount_0, 5), 0.068s
[2022-09-09 15:07:23.546229] INFO: derived_feature_extractor: 提取完成 decay_linear(return_0, 5), 0.062s
[2022-09-09 15:07:23.721884] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, return_0, 5), 0.174s
[2022-09-09 15:07:23.902675] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, high_0, 5), 0.179s
[2022-09-09 15:07:24.070068] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, low_0, 5), 0.165s
[2022-09-09 15:07:24.243047] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, close_0, 5), 0.171s
[2022-09-09 15:07:24.416871] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, open_0, 5), 0.171s
[2022-09-09 15:07:24.598481] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, turn_0, 5), 0.180s
[2022-09-09 15:07:24.831801] INFO: derived_feature_extractor: 提取完成 correlation(return_0, high_0, 5), 0.231s
[2022-09-09 15:07:25.004682] INFO: derived_feature_extractor: 提取完成 correlation(return_0, low_0, 5), 0.171s
[2022-09-09 15:07:25.221145] INFO: derived_feature_extractor: 提取完成 correlation(return_0, close_0, 5), 0.213s
[2022-09-09 15:07:25.445855] INFO: derived_feature_extractor: 提取完成 correlation(return_0, open_0, 5), 0.223s
[2022-09-09 15:07:25.608156] INFO: derived_feature_extractor: 提取完成 correlation(return_0, turn_0, 5), 0.160s
[2022-09-09 15:07:25.753818] INFO: derived_feature_extractor: 提取完成 correlation(high_0, low_0, 5), 0.144s
[2022-09-09 15:07:25.912173] INFO: derived_feature_extractor: 提取完成 correlation(high_0, close_0, 5), 0.156s
[2022-09-09 15:07:26.089863] INFO: derived_feature_extractor: 提取完成 correlation(high_0, open_0, 5), 0.176s
[2022-09-09 15:07:26.254588] INFO: derived_feature_extractor: 提取完成 correlation(high_0, turn_0, 5), 0.163s
[2022-09-09 15:07:26.415307] INFO: derived_feature_extractor: 提取完成 correlation(low_0, close_0, 5), 0.159s
[2022-09-09 15:07:26.561865] INFO: derived_feature_extractor: 提取完成 correlation(low_0, open_0, 5), 0.145s
[2022-09-09 15:07:26.738166] INFO: derived_feature_extractor: 提取完成 correlation(low_0, turn_0, 5), 0.174s
[2022-09-09 15:07:26.903112] INFO: derived_feature_extractor: 提取完成 correlation(close_0, open_0, 5), 0.163s
[2022-09-09 15:07:27.048723] INFO: derived_feature_extractor: 提取完成 correlation(close_0, turn_0, 5), 0.144s
[2022-09-09 15:07:27.216903] INFO: derived_feature_extractor: 提取完成 correlation(open_0, turn_0, 5), 0.166s
[2022-09-09 15:07:27.334105] INFO: derived_feature_extractor: /y_2017, 102
[2022-09-09 15:07:27.436699] INFO: derived_feature_extractor: /y_2018, 4375
[2022-09-09 15:07:27.551387] INFO: derived_feature_extractor: /y_2019, 4625
[2022-09-09 15:07:27.668433] INFO: derived_feature_extractor: /y_2020, 4611
[2022-09-09 15:07:27.773165] INFO: derived_feature_extractor: /y_2021, 4679
[2022-09-09 15:07:27.956018] INFO: derived_feature_extractor: /y_2022, 2970
[2022-09-09 15:07:28.046223] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[6.412256s].
[2022-09-09 15:07:28.053659] INFO: moduleinvoker: standardlize.v8 开始运行..