# 本代码由可视化策略环境自动生成 2023年2月28日 22:32
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
# 回测引擎:初始化函数,只执行一次
def m19_initialize_bigquant_run(context):
# 加载预测数据
context.ranker_prediction = context.options['data'].read_df()
# 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
# 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
# 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
stock_count = 30
# 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
# 设置每只股票占用的最大资金比例
context.max_cash_per_instrument = 0.2
context.options['hold_days'] = 5
# 回测引擎:每日数据处理函数,每天执行一次
def m19_handle_data_bigquant_run(context, data):
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
ranker_prediction = ranker_prediction.sort_values('prediction', ascending=False)
# 1. 资金分配
# 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
# 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
positions = {e.symbol: p.amount * p.last_sale_price
for e, p in context.portfolio.positions.items()}
# 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
if not is_staging and cash_for_sell > 0:
equities = {e.symbol: e for e, p in context.portfolio.positions.items()}
instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
lambda x: x in equities)])))
for instrument in instruments:
context.order_target(context.symbol(instrument), 0)
cash_for_sell -= positions[instrument]
if cash_for_sell <= 0:
break
# 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
buy_cash_weights = context.stock_weights
buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
for i, instrument in enumerate(buy_instruments):
cash = cash_for_buy * buy_cash_weights[i]
if cash > max_cash_per_instrument - positions.get(instrument, 0):
# 确保股票持仓量不会超过每次股票最大的占用资金量
cash = max_cash_per_instrument - positions.get(instrument, 0)
if cash > 0:
context.order_value(context.symbol(instrument), cash)
# 回测引擎:准备数据,只执行一次
def m19_prepare_bigquant_run(context):
pass
m1 = M.instruments.v2(
start_date='2014-01-01',
end_date='2015-01-01',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m2 = M.advanced_auto_labeler.v2(
instruments=m1.data,
label_expr="""# #号开始的表示注释
# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
# 添加benchmark_前缀,可使用对应的benchmark数据
# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
shift(close, -5) / shift(open, -1)
# 极值处理:用1%和99%分位的值做clip
clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
# 将分数映射到分类,这里使用20个分类
all_wbins(label, 20)
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
where(shift(high, -1) == shift(low, -1), NaN, label)
""",
start_date='',
end_date='',
benchmark='000300.SHA',
drop_na_label=True,
cast_label_int=True
)
m3 = M.input_features.v1(
features="""(close_0-mean(close_0,12))/mean(close_0,12)*100
rank(std(amount_0,15))
rank_avg_amount_0/rank_avg_amount_8
ts_argmin(low_0,20)
rank_return_30
"""
)
m15 = M.general_feature_extractor.v7(
instruments=m1.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=0
)
m16 = M.derived_feature_extractor.v3(
input_data=m15.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False
)
m7 = M.join.v3(
data1=m2.data,
data2=m16.data,
on='date,instrument',
how='inner',
sort=False
)
m13 = M.dropnan.v1(
input_data=m7.data
)
m9 = M.instruments.v2(
start_date=T.live_run_param('trading_date', '2015-01-01'),
end_date=T.live_run_param('trading_date', '2016-04-19'),
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m17 = M.general_feature_extractor.v7(
instruments=m9.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=0
)
m18 = M.derived_feature_extractor.v3(
input_data=m17.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False
)
m14 = M.dropnan.v1(
input_data=m18.data
)
m6 = M.lightgbm.v1(
training_ds=m13.data,
features=m3.data,
predict_ds=m14.data,
num_boost_round=30,
objective='二分类',
num_leaves=30,
learning_rate=0.1,
min_data_in_leaf=200,
max_bin=255,
key_cols='date,instrument',
group_col='date',
other_train_parameters={'label_gain':','.join([str(x) for x in range(200)])}
)
m19 = M.trade.v4(
instruments=m9.data,
options_data=m6.predictions,
start_date='',
end_date='',
initialize=m19_initialize_bigquant_run,
handle_data=m19_handle_data_bigquant_run,
prepare=m19_prepare_bigquant_run,
volume_limit=0.025,
order_price_field_buy='open',
order_price_field_sell='close',
capital_base=1000000,
auto_cancel_non_tradable_orders=True,
data_frequency='daily',
price_type='后复权',
product_type='股票',
plot_charts=True,
backtest_only=False,
benchmark='000300.SHA'
)
model=m6.output_model.read()
importance=model['feature_gains']
importance
[2023-02-28 22:33:14.816555] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-02-28 22:33:14.988390] INFO: moduleinvoker: 命中缓存
[2023-02-28 22:33:14.991252] INFO: moduleinvoker: instruments.v2 运行完成[0.174694s].
[2023-02-28 22:33:15.007160] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2023-02-28 22:33:15.957189] INFO: 自动标注(股票): 加载历史数据: 569948 行
[2023-02-28 22:33:15.959716] INFO: 自动标注(股票): 开始标注 ..
[2023-02-28 22:33:16.930085] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[1.922919s].
[2023-02-28 22:33:16.943634] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-02-28 22:33:16.988928] INFO: moduleinvoker: input_features.v1 运行完成[0.045314s].
[2023-02-28 22:33:17.012400] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-02-28 22:33:19.636921] INFO: 基础特征抽取: 年份 2014, 特征行数=569948
[2023-02-28 22:33:20.017970] INFO: 基础特征抽取: 年份 2015, 特征行数=0
[2023-02-28 22:33:20.077687] INFO: 基础特征抽取: 总行数: 569948
[2023-02-28 22:33:20.088258] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[3.075871s].
[2023-02-28 22:33:20.103175] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-02-28 22:33:22.149536] INFO: derived_feature_extractor: 提取完成 (close_0-mean(close_0,12))/mean(close_0,12)*100, 0.965s
[2023-02-28 22:33:22.953559] INFO: derived_feature_extractor: 提取完成 rank(std(amount_0,15)), 0.801s
[2023-02-28 22:33:22.961405] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_8, 0.004s
[2023-02-28 22:33:25.829031] INFO: derived_feature_extractor: 提取完成 ts_argmin(low_0,20), 2.865s
[2023-02-28 22:33:27.195639] INFO: derived_feature_extractor: /y_2014, 569948
[2023-02-28 22:33:27.689826] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[7.586637s].
[2023-02-28 22:33:27.705709] INFO: moduleinvoker: join.v3 开始运行..
[2023-02-28 22:33:31.126520] INFO: join: /y_2014, 行数=555191/569948, 耗时=2.011627s
[2023-02-28 22:33:31.235055] INFO: join: 最终行数: 555191
[2023-02-28 22:33:31.254941] INFO: moduleinvoker: join.v3 运行完成[3.549237s].
[2023-02-28 22:33:31.273555] INFO: moduleinvoker: dropnan.v1 开始运行..
[2023-02-28 22:33:33.216875] INFO: dropnan: /y_2014, 505781/555191
[2023-02-28 22:33:33.295672] INFO: dropnan: 行数: 505781/555191
[2023-02-28 22:33:33.308015] INFO: moduleinvoker: dropnan.v1 运行完成[2.034443s].
[2023-02-28 22:33:33.315963] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-02-28 22:33:33.431546] INFO: moduleinvoker: instruments.v2 运行完成[0.115581s].
[2023-02-28 22:33:33.457347] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-02-28 22:33:35.966228] INFO: 基础特征抽取: 年份 2015, 特征行数=569698
[2023-02-28 22:33:37.077902] INFO: 基础特征抽取: 年份 2016, 特征行数=180614
[2023-02-28 22:33:37.182065] INFO: 基础特征抽取: 总行数: 750312
[2023-02-28 22:33:37.187975] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[3.730664s].
[2023-02-28 22:33:37.196749] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-02-28 22:33:40.562252] INFO: derived_feature_extractor: 提取完成 (close_0-mean(close_0,12))/mean(close_0,12)*100, 1.722s
[2023-02-28 22:33:41.863639] INFO: derived_feature_extractor: 提取完成 rank(std(amount_0,15)), 1.297s
[2023-02-28 22:33:41.869265] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_8, 0.003s
[2023-02-28 22:33:45.400619] INFO: derived_feature_extractor: 提取完成 ts_argmin(low_0,20), 3.529s
[2023-02-28 22:33:46.983166] INFO: derived_feature_extractor: /y_2015, 569698
[2023-02-28 22:33:47.808911] INFO: derived_feature_extractor: /y_2016, 180614
[2023-02-28 22:33:48.076270] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[10.879484s].
[2023-02-28 22:33:48.105600] INFO: moduleinvoker: dropnan.v1 开始运行..
[2023-02-28 22:33:49.885349] INFO: dropnan: /y_2015, 514170/569698
[2023-02-28 22:33:50.337347] INFO: dropnan: /y_2016, 179294/180614
[2023-02-28 22:33:50.486563] INFO: dropnan: 行数: 693464/750312
[2023-02-28 22:33:50.499095] INFO: moduleinvoker: dropnan.v1 运行完成[2.393484s].
[2023-02-28 22:33:50.512916] INFO: moduleinvoker: lightgbm.v1 开始运行..
[2023-02-28 22:33:58.948971] INFO: moduleinvoker: lightgbm.v1 运行完成[8.436065s].
[2023-02-28 22:33:59.050272] INFO: moduleinvoker: backtest.v8 开始运行..
[2023-02-28 22:33:59.062190] INFO: backtest: biglearning backtest:V8.6.3
[2023-02-28 22:33:59.064280] INFO: backtest: product_type:stock by specified
[2023-02-28 22:33:59.231667] INFO: moduleinvoker: cached.v2 开始运行..
[2023-02-28 22:34:07.045252] INFO: backtest: 读取股票行情完成:1761281
[2023-02-28 22:34:08.693964] INFO: moduleinvoker: cached.v2 运行完成[9.462322s].
[2023-02-28 22:34:19.899970] INFO: backtest: algo history_data=DataSource(400063b18f624589a6e0f716fcaf3720T)
[2023-02-28 22:34:19.902582] INFO: algo: TradingAlgorithm V1.8.9
[2023-02-28 22:34:21.484079] INFO: algo: trading transform...
[2023-02-28 22:34:57.378189] INFO: Performance: Simulated 315 trading days out of 315.
[2023-02-28 22:34:57.380630] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2023-02-28 22:34:57.393833] INFO: Performance: last close: 2016-04-19 15:00:00+00:00
[2023-02-28 22:35:08.896685] INFO: moduleinvoker: backtest.v8 运行完成[69.846419s].
[2023-02-28 22:35:08.899797] INFO: moduleinvoker: trade.v4 运行完成[69.944017s].