{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-05-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n pred_df = context.ranker_prediction\n trading_days = pred_df.date.unique() \n context.trading_days_str = [str(i)[:10] for i in trading_days]\n \n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 3\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 1\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n \n date = data.current_dt.strftime('%Y-%m-%d')\n\n if context.trading_days_str.index(date) > 0:\n pre_date = context.trading_days_str[context.trading_days_str.index(date)-1]\n elif context.trading_days_str.index(date) == 0:\n pre_date = None\n \n if pre_date == None:\n return \n \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == pre_date]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='749,-126.44607543945312,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='638,548,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='816,641,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1076,127,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-215' Position='381,188,200,200'/><node_position Node='-222' Position='385,280,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='735,796.5538940429688,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-07-01 20:36:10.485575] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-07-01 20:36:10.547105] INFO: moduleinvoker: 命中缓存
[2022-07-01 20:36:10.552143] INFO: moduleinvoker: instruments.v2 运行完成[0.066564s].
[2022-07-01 20:36:10.573107] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-07-01 20:36:15.238343] INFO: 自动标注(股票): 加载历史数据: 2647809 行
[2022-07-01 20:36:15.242286] INFO: 自动标注(股票): 开始标注 ..
[2022-07-01 20:36:20.501321] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[9.928237s].
[2022-07-01 20:36:20.548025] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-07-01 20:36:20.566586] INFO: moduleinvoker: 命中缓存
[2022-07-01 20:36:20.572382] INFO: moduleinvoker: input_features.v1 运行完成[0.024351s].
[2022-07-01 20:36:20.657391] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-07-01 20:36:20.670712] INFO: moduleinvoker: 命中缓存
[2022-07-01 20:36:20.674563] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.017164s].
[2022-07-01 20:36:20.749029] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-07-01 20:36:20.772723] INFO: moduleinvoker: 命中缓存
[2022-07-01 20:36:20.777673] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.028641s].
[2022-07-01 20:36:20.852666] INFO: moduleinvoker: join.v3 开始运行..
[2022-07-01 20:36:32.732872] INFO: join: /y_2017, 行数=0/193398, 耗时=2.852548s
[2022-07-01 20:36:41.725945] INFO: join: /y_2018, 行数=813532/816987, 耗时=8.990199s
[2022-07-01 20:36:50.980533] INFO: join: /y_2019, 行数=881324/884867, 耗时=9.234367s
[2022-07-01 20:37:00.249832] INFO: join: /y_2020, 行数=931755/945961, 耗时=9.259155s
[2022-07-01 20:37:01.540961] INFO: join: 最终行数: 2626611
[2022-07-01 20:37:01.570060] INFO: moduleinvoker: join.v3 运行完成[40.717395s].
[2022-07-01 20:37:01.642753] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-07-01 20:37:02.259608] INFO: dropnan: /y_2017, 0/0
[2022-07-01 20:37:07.086733] INFO: dropnan: /y_2018, 811852/813532
[2022-07-01 20:37:12.386408] INFO: dropnan: /y_2019, 877982/881324
[2022-07-01 20:37:18.143130] INFO: dropnan: /y_2020, 923310/931755
[2022-07-01 20:37:18.485506] INFO: dropnan: 行数: 2613144/2626611
[2022-07-01 20:37:18.548367] INFO: moduleinvoker: dropnan.v1 运行完成[16.905612s].
[2022-07-01 20:37:18.562017] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-07-01 20:37:24.967381] INFO: StockRanker: 特征预处理 ..
[2022-07-01 20:37:30.165318] INFO: StockRanker: prepare data: training ..
[2022-07-01 20:37:36.323972] INFO: StockRanker: sort ..
[2022-07-01 20:38:47.043369] INFO: StockRanker训练: 8b877b86 准备训练: 2613144 行数
[2022-07-01 20:38:47.046814] INFO: StockRanker训练: AI模型训练,将在2613144*13=3397.09万数据上对模型训练进行20轮迭代训练。预计将需要11~21分钟。请耐心等待。
[2022-07-01 20:38:47.309936] INFO: StockRanker训练: 正在训练 ..
[2022-07-01 20:38:47.374870] INFO: StockRanker训练: 任务状态: Pending
[2022-07-01 20:38:57.474517] INFO: StockRanker训练: 任务状态: Running
[2022-07-01 20:40:28.977702] INFO: StockRanker训练: 00:01:36.5632019, finished iteration 1
[2022-07-01 20:41:10.243503] INFO: StockRanker训练: 00:02:08.4362585, finished iteration 2
[2022-07-01 20:41:40.550145] INFO: StockRanker训练: 00:02:40.3688340, finished iteration 3
[2022-07-01 20:42:11.121943] INFO: StockRanker训练: 00:03:10.6488830, finished iteration 4
[2022-07-01 20:42:41.269685] INFO: StockRanker训练: 00:03:42.0127285, finished iteration 5
[2022-07-01 20:43:11.413206] INFO: StockRanker训练: 00:04:13.1737721, finished iteration 6
[2022-07-01 20:43:41.584213] INFO: StockRanker训练: 00:04:48.2001756, finished iteration 7
[2022-07-01 20:44:21.768243] INFO: StockRanker训练: 00:05:24.3633002, finished iteration 8
[2022-07-01 20:45:02.035111] INFO: StockRanker训练: 00:05:59.8515164, finished iteration 9
[2022-07-01 20:45:32.197657] INFO: StockRanker训练: 00:06:30.1762252, finished iteration 10
[2022-07-01 20:46:02.417851] INFO: StockRanker训练: 00:07:00.5552530, finished iteration 11
[2022-07-01 20:46:32.557040] INFO: StockRanker训练: 00:07:31.0610074, finished iteration 12
[2022-07-01 20:47:02.720998] INFO: StockRanker训练: 00:08:01.9655382, finished iteration 13
[2022-07-01 20:47:32.963774] INFO: StockRanker训练: 00:08:33.5881708, finished iteration 14
[2022-07-01 20:48:03.117238] INFO: StockRanker训练: 00:09:04.3242046, finished iteration 15
[2022-07-01 20:48:33.318994] INFO: StockRanker训练: 00:09:36.4106240, finished iteration 16
[2022-07-01 20:49:03.479834] INFO: StockRanker训练: 00:10:07.6673987, finished iteration 17
[2022-07-01 20:49:33.674478] INFO: StockRanker训练: 00:10:40.4816154, finished iteration 18
[2022-07-01 20:50:13.899986] INFO: StockRanker训练: 00:11:12.3990673, finished iteration 19
[2022-07-01 20:50:44.067662] INFO: StockRanker训练: 00:11:44.1773833, finished iteration 20
[2022-07-01 20:50:44.070337] INFO: StockRanker训练: 任务状态: Succeeded
[2022-07-01 20:50:44.522697] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[805.96067s].
[2022-07-01 20:50:44.542331] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-07-01 20:50:44.585390] INFO: moduleinvoker: 命中缓存
[2022-07-01 20:50:44.588864] INFO: moduleinvoker: instruments.v2 运行完成[0.046549s].
[2022-07-01 20:50:44.623433] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-07-01 20:50:44.641806] INFO: moduleinvoker: 命中缓存
[2022-07-01 20:50:44.645631] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.022173s].
[2022-07-01 20:50:44.677422] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-07-01 20:50:44.705776] INFO: moduleinvoker: 命中缓存
[2022-07-01 20:50:44.708382] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.03098s].
[2022-07-01 20:50:44.735114] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-07-01 20:50:44.746744] INFO: moduleinvoker: 命中缓存
[2022-07-01 20:50:44.749722] INFO: moduleinvoker: dropnan.v1 运行完成[0.014604s].
[2022-07-01 20:50:44.774257] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-07-01 20:50:45.784940] INFO: StockRanker预测: /y_2020 ..
[2022-07-01 20:50:47.598270] INFO: StockRanker预测: /y_2021 ..
[2022-07-01 20:50:54.132018] INFO: StockRanker预测: /y_2022 ..
[2022-07-01 20:50:58.729461] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[13.955212s].
[2022-07-01 20:50:58.898314] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-07-01 20:50:58.905710] INFO: backtest: biglearning backtest:V8.6.2
[2022-07-01 20:50:58.908374] INFO: backtest: product_type:stock by specified
[2022-07-01 20:50:59.698777] INFO: moduleinvoker: cached.v2 开始运行..
[2022-07-01 20:50:59.715132] INFO: moduleinvoker: 命中缓存
[2022-07-01 20:50:59.719646] INFO: moduleinvoker: cached.v2 运行完成[0.020889s].
[2022-07-01 20:51:05.750916] INFO: algo: TradingAlgorithm V1.8.8
[2022-07-01 20:51:07.714806] INFO: algo: trading transform...
[2022-07-01 20:51:22.618757] INFO: Performance: Simulated 339 trading days out of 339.
[2022-07-01 20:51:22.621277] INFO: Performance: first open: 2021-01-04 09:30:00+00:00
[2022-07-01 20:51:22.625910] INFO: Performance: last close: 2022-05-31 15:00:00+00:00
[2022-07-01 20:51:31.669822] INFO: moduleinvoker: backtest.v8 运行完成[32.771529s].
[2022-07-01 20:51:31.671969] INFO: moduleinvoker: trade.v4 运行完成[32.894466s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-dd9d6fd8667845ca8d8e2632b3a942d2"}/bigcharts-data-end
- 收益率91.72%
- 年化收益率62.23%
- 基准收益率-21.49%
- 阿尔法0.79
- 贝塔0.46
- 夏普比率1.73
- 胜率0.51
- 盈亏比1.33
- 收益波动率28.57%
- 信息比率0.15
- 最大回撤23.91%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-92ef3f2ecfb748c4995fab97f284d003"}/bigcharts-data-end