{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-274:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-274:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-281:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-295:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-1243:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-9732:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-6060:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-288:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-6060:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-281:input_data","from_node_id":"-274:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-281:data"},{"to_node_id":"-295:input_data","from_node_id":"-288:data"},{"to_node_id":"-742:input_data","from_node_id":"-295:data"},{"to_node_id":"-4450:features","from_node_id":"-1243:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"-4450:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-234:data"},{"to_node_id":"-4450:training_ds","from_node_id":"-936:data"},{"to_node_id":"-4450:test_ds","from_node_id":"-936:left_data"},{"to_node_id":"-234:input_data","from_node_id":"-742:data"},{"to_node_id":"-936:input_data","from_node_id":"-230:data"},{"to_node_id":"-230:input_data","from_node_id":"-9732:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n#signedpower((shift(close, -5) / shift(open, -1)-1),log10(market_cap_float)/pe_ttm)\n#where((shift(close, -3) / shift(open, -1) > 0) & (correlation(close, amount, -3)>0),correlation(close, amount, -3) ,0)\n(shift(close, -10) / shift(open, -1)-1)*100\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 60)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"Alpha_1=-1*rank((ts_max(high_0,20)+ts_min(low_0,20)-open_20-close_0))\nAlpha_2=-1*rank((close_0-open_20)/(ts_max(high_0,20)-ts_min(low_0,20)))\nAlpha_3=rank(-1*(ts_max(close_0,20)-close_0)/(ts_max(close_0,20)-ts_min(close_0,20)))\n\nAlpha_4=rank(sum(amount_0*sign(max(open_0+close_0-high_0-low_0,close_0-open_0)/max(high_0-close_1,high_0-low_0,close_1-low_0)-0.1),20))\nAlpha_5=rank(return_20)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-02","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2020-12-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-274","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"120","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-274"},{"name":"features","node_id":"-274"}],"output_ports":[{"name":"data","node_id":"-274"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-281"},{"name":"features","node_id":"-281"}],"output_ports":[{"name":"data","node_id":"-281"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"120","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-295","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-295"},{"name":"features","node_id":"-295"}],"output_ports":[{"name":"data","node_id":"-295"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-6060","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n #stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n #context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.5\n context.options['hold_days'] = 2\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n buy_condition = 2.0\n sell_condition= 1.0\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (0.5 if is_staging else 0.75) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n \n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if True:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments12 = list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities )])\n position_prediction = ranker_prediction[ranker_prediction.instrument.isin(instruments12)]\n instruments = list(position_prediction.instrument[position_prediction.score <sell_condition])\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n \n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n rank_buy = ranker_prediction[ranker_prediction.score>buy_condition]\n buy_instruments1 = list(rank_buy.instrument)\n buy_scores1 = list(rank_buy.score)\n buy_instruments = buy_instruments1[:np.where(len(buy_instruments1)>5,5,len(buy_instruments1))]\n buy_scores = buy_scores1[:len(buy_instruments)]\n buy_cash_weights = buy_scores/np.sum(buy_scores)\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n if any(buy_instruments):\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n today_price = data.current(symbol(instrument), ['amount', 'volume'])\n buy_price =today_price['amount'] / today_price['volume']\n buy_amount = int(round(cash/(buy_price*100)))\n if buy_amount > 0: \n context.order_lots(symbol(instrument),buy_amount)","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-6060"},{"name":"options_data","node_id":"-6060"},{"name":"history_ds","node_id":"-6060"},{"name":"benchmark_ds","node_id":"-6060"},{"name":"trading_calendar","node_id":"-6060"}],"output_ports":[{"name":"raw_perf","node_id":"-6060"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-1243","module_id":"BigQuantSpace.features_short.features_short-v1","parameters":[],"input_ports":[{"name":"input_1","node_id":"-1243"}],"output_ports":[{"name":"data_1","node_id":"-1243"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-4450","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"70","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"2400","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"60","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":"0.15","type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":"800","type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-4450"},{"name":"features","node_id":"-4450"},{"name":"test_ds","node_id":"-4450"},{"name":"base_model","node_id":"-4450"}],"output_ports":[{"name":"model","node_id":"-4450"},{"name":"feature_gains","node_id":"-4450"},{"name":"m_lazy_run","node_id":"-4450"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-234","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-234"},{"name":"features","node_id":"-234"}],"output_ports":[{"name":"data","node_id":"-234"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-936","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"date<'2017-01-01'","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-936"}],"output_ports":[{"name":"data","node_id":"-936"},{"name":"left_data","node_id":"-936"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-742","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-742"}],"output_ports":[{"name":"data","node_id":"-742"},{"name":"left_data","node_id":"-742"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-230","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-230"},{"name":"features","node_id":"-230"}],"output_ports":[{"name":"data","node_id":"-230"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-9732","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-9732"}],"output_ports":[{"name":"data","node_id":"-9732"},{"name":"left_data","node_id":"-9732"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='191,-318,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='57,-164,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='620,-396,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='170,8,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='653,693,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1028,-217,200,200'/><node_position Node='-274' Position='398,-167,200,200'/><node_position Node='-281' Position='392,-81,200,200'/><node_position Node='-288' Position='1031,-55,200,200'/><node_position Node='-295' Position='1030,72,200,200'/><node_position Node='-6060' Position='586,810,200,200'/><node_position Node='-1243' Position='588,255,200,200'/><node_position Node='-4450' Position='553,582,200,200'/><node_position Node='-234' Position='1027,412,200,200'/><node_position Node='-936' Position='151,384,200,200'/><node_position Node='-742' Position='1034,215,200,200'/><node_position Node='-230' Position='150,250,200,200'/><node_position Node='-9732' Position='156,135,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-03-16 08:39:43.204116] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-16 08:39:43.223929] INFO: moduleinvoker: 命中缓存
[2022-03-16 08:39:43.225659] INFO: moduleinvoker: instruments.v2 运行完成[0.021563s].
[2022-03-16 08:39:43.238189] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-03-16 08:39:47.148735] INFO: 自动标注(股票): 加载历史数据: 4597290 行
[2022-03-16 08:39:47.150374] INFO: 自动标注(股票): 开始标注 ..
[2022-03-16 08:39:52.369639] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[9.131431s].
[2022-03-16 08:39:52.392446] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-03-16 08:39:52.432001] INFO: moduleinvoker: input_features.v1 运行完成[0.039551s].
[2022-03-16 08:39:52.447925] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-16 08:39:54.166230] INFO: 基础特征抽取: 年份 2009, 特征行数=125803
[2022-03-16 08:39:56.554919] INFO: 基础特征抽取: 年份 2010, 特征行数=431567
[2022-03-16 08:39:59.283322] INFO: 基础特征抽取: 年份 2011, 特征行数=511455
[2022-03-16 08:40:02.717329] INFO: 基础特征抽取: 年份 2012, 特征行数=565675
[2022-03-16 08:40:05.815706] INFO: 基础特征抽取: 年份 2013, 特征行数=564168
[2022-03-16 08:40:09.844864] INFO: 基础特征抽取: 年份 2014, 特征行数=569948
[2022-03-16 08:40:13.300933] INFO: 基础特征抽取: 年份 2015, 特征行数=569698
[2022-03-16 08:40:16.885103] INFO: 基础特征抽取: 年份 2016, 特征行数=641546
[2022-03-16 08:40:21.285629] INFO: 基础特征抽取: 年份 2017, 特征行数=743233
[2022-03-16 08:40:24.920504] INFO: 基础特征抽取: 年份 2018, 特征行数=0
[2022-03-16 08:40:25.069603] INFO: 基础特征抽取: 总行数: 4723093
[2022-03-16 08:40:25.076983] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[32.62901s].
[2022-03-16 08:40:25.099940] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-16 08:40:42.843252] INFO: derived_feature_extractor: 提取完成 Alpha_1=-1*rank((ts_max(high_0,20)+ts_min(low_0,20)-open_20-close_0)), 9.347s
[2022-03-16 08:40:52.504910] INFO: derived_feature_extractor: 提取完成 Alpha_2=-1*rank((close_0-open_20)/(ts_max(high_0,20)-ts_min(low_0,20))), 9.660s
[2022-03-16 08:41:05.865090] INFO: derived_feature_extractor: 提取完成 Alpha_3=rank(-1*(ts_max(close_0,20)-close_0)/(ts_max(close_0,20)-ts_min(close_0,20))), 13.359s
[2022-03-16 08:41:11.764574] INFO: derived_feature_extractor: 提取完成 Alpha_4=rank(sum(amount_0*sign(max(open_0+close_0-high_0-low_0,close_0-open_0)/max(high_0-close_1,high_0-low_0,close_1-low_0)-0.1),20)), 5.898s
[2022-03-16 08:41:14.328854] INFO: derived_feature_extractor: 提取完成 Alpha_5=rank(return_20), 2.562s
[2022-03-16 08:41:15.116204] INFO: derived_feature_extractor: /y_2009, 125803
[2022-03-16 08:41:15.872306] INFO: derived_feature_extractor: /y_2010, 431567
[2022-03-16 08:41:16.872531] INFO: derived_feature_extractor: /y_2011, 511455
[2022-03-16 08:41:18.164668] INFO: derived_feature_extractor: /y_2012, 565675
[2022-03-16 08:41:19.352687] INFO: derived_feature_extractor: /y_2013, 564168
[2022-03-16 08:41:20.509107] INFO: derived_feature_extractor: /y_2014, 569948
[2022-03-16 08:41:21.879768] INFO: derived_feature_extractor: /y_2015, 569698
[2022-03-16 08:41:23.241927] INFO: derived_feature_extractor: /y_2016, 641546
[2022-03-16 08:41:24.742732] INFO: derived_feature_extractor: /y_2017, 743233
[2022-03-16 08:41:25.310325] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[60.210375s].
[2022-03-16 08:41:25.324727] INFO: moduleinvoker: join.v3 开始运行..
[2022-03-16 08:41:33.836381] INFO: join: /y_2009, 行数=0/125803, 耗时=1.733066s
[2022-03-16 08:41:36.226945] INFO: join: /y_2010, 行数=431019/431567, 耗时=2.388465s
[2022-03-16 08:41:38.781395] INFO: join: /y_2011, 行数=510907/511455, 耗时=2.550521s
[2022-03-16 08:41:41.541162] INFO: join: /y_2012, 行数=564567/565675, 耗时=2.755282s
[2022-03-16 08:41:44.412038] INFO: join: /y_2013, 行数=563117/564168, 耗时=2.866444s
[2022-03-16 08:41:47.338524] INFO: join: /y_2014, 行数=567859/569948, 耗时=2.922222s
[2022-03-16 08:41:50.257351] INFO: join: /y_2015, 行数=560395/569698, 耗时=2.914206s
[2022-03-16 08:41:53.244562] INFO: join: /y_2016, 行数=637411/641546, 耗时=2.981669s
[2022-03-16 08:41:56.474503] INFO: join: /y_2017, 行数=703934/743233, 耗时=3.223973s
[2022-03-16 08:41:56.636664] INFO: join: 最终行数: 4539209
[2022-03-16 08:41:56.663075] INFO: moduleinvoker: join.v3 运行完成[31.338345s].
[2022-03-16 08:41:56.678143] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2022-03-16 08:41:58.490598] INFO: A股股票过滤: 过滤 /y_2010, 413404/0/431019
[2022-03-16 08:42:00.386452] INFO: A股股票过滤: 过滤 /y_2011, 493050/0/510907
[2022-03-16 08:42:02.436330] INFO: A股股票过滤: 过滤 /y_2012, 547433/0/564567
[2022-03-16 08:42:04.416917] INFO: A股股票过滤: 过滤 /y_2013, 546006/0/563117
[2022-03-16 08:42:06.570593] INFO: A股股票过滤: 过滤 /y_2014, 552100/0/567859
[2022-03-16 08:42:08.700671] INFO: A股股票过滤: 过滤 /y_2015, 548093/0/560395
[2022-03-16 08:42:11.159741] INFO: A股股票过滤: 过滤 /y_2016, 626472/0/637411
[2022-03-16 08:42:13.879019] INFO: A股股票过滤: 过滤 /y_2017, 692317/0/703934
[2022-03-16 08:42:13.885316] INFO: A股股票过滤: 过滤完成, 4418875 + 0
[2022-03-16 08:42:13.972776] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[17.294614s].
[2022-03-16 08:42:13.997495] INFO: moduleinvoker: dropnan.v2 开始运行..
[2022-03-16 08:42:14.560985] INFO: dropnan: /y_2010, 406126/413404
[2022-03-16 08:42:15.099211] INFO: dropnan: /y_2011, 486906/493050
[2022-03-16 08:42:15.692784] INFO: dropnan: /y_2012, 543891/547433
[2022-03-16 08:42:16.291537] INFO: dropnan: /y_2013, 545871/546006
[2022-03-16 08:42:16.952406] INFO: dropnan: /y_2014, 550261/552100
[2022-03-16 08:42:17.652685] INFO: dropnan: /y_2015, 545817/548093
[2022-03-16 08:42:18.343636] INFO: dropnan: /y_2016, 624612/626472
[2022-03-16 08:42:19.068180] INFO: dropnan: /y_2017, 686805/692317
[2022-03-16 08:42:19.215375] INFO: dropnan: 行数: 4390289/4418875
[2022-03-16 08:42:19.232526] INFO: moduleinvoker: dropnan.v2 运行完成[5.23504s].
[2022-03-16 08:42:19.246334] INFO: moduleinvoker: filter.v3 开始运行..
[2022-03-16 08:42:19.282688] INFO: filter: 使用表达式 date[2022-03-16 08:42:19.788520] INFO: filter: 过滤 /y_2010, 406126/0/406126
[2022-03-16 08:42:20.379984] INFO: filter: 过滤 /y_2011, 486906/0/486906
[2022-03-16 08:42:20.948119] INFO: filter: 过滤 /y_2012, 543891/0/543891
[2022-03-16 08:42:21.510234] INFO: filter: 过滤 /y_2013, 545871/0/545871
[2022-03-16 08:42:22.152547] INFO: filter: 过滤 /y_2014, 550261/0/550261
[2022-03-16 08:42:22.795321] INFO: filter: 过滤 /y_2015, 545817/0/545817
[2022-03-16 08:42:23.600513] INFO: filter: 过滤 /y_2016, 624612/0/624612
[2022-03-16 08:42:24.343443] INFO: filter: 过滤 /y_2017, 0/686805/686805
[2022-03-16 08:42:24.395051] INFO: moduleinvoker: filter.v3 运行完成[5.1487s].
[2022-03-16 08:42:24.452618] INFO: moduleinvoker: features_short.v1 开始运行..
[2022-03-16 08:42:24.516150] INFO: moduleinvoker: features_short.v1 运行完成[0.063536s].
[2022-03-16 08:42:24.531504] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-03-16 08:42:28.039922] INFO: StockRanker: 特征预处理 ..
[2022-03-16 08:42:30.502441] INFO: StockRanker: prepare data: training ..
[2022-03-16 08:42:32.596389] INFO: StockRanker: sort ..
[2022-03-16 08:43:10.567810] INFO: StockRanker: prepare data: test ..
[2022-03-16 08:43:10.942684] INFO: StockRanker: sort ..
[2022-03-16 08:43:17.837539] INFO: StockRanker训练: f27b3a62 准备训练: 3703484 行数, test: 686805 rows
[2022-03-16 08:43:17.839122] INFO: StockRanker训练: AI模型训练,将在3703484*5=1851.74万数据上对模型训练进行60轮迭代训练。预计将需要17~34分钟。请耐心等待。
[2022-03-16 08:43:18.055042] INFO: StockRanker训练: 正在训练 ..
[2022-03-16 08:43:18.136751] INFO: StockRanker训练: 任务状态: Pending
[2022-03-16 08:43:38.213292] INFO: StockRanker训练: 任务状态: Running
[2022-03-16 08:44:58.690620] INFO: StockRanker训练: 00:01:20.6488932, finished iteration 1
[2022-03-16 08:45:18.836490] INFO: StockRanker训练: 00:01:41.4553195, finished iteration 2
[2022-03-16 08:45:38.920380] INFO: StockRanker训练: 00:02:04.5986914, finished iteration 3
[2022-03-16 08:46:09.056404] INFO: StockRanker训练: 00:02:32.1514495, finished iteration 4
[2022-03-16 08:46:39.226909] INFO: StockRanker训练: 00:03:01.4483721, finished iteration 5
[2022-03-16 08:47:09.411071] INFO: StockRanker训练: 00:03:33.7345915, finished iteration 6
[2022-03-16 08:47:39.574335] INFO: StockRanker训练: 00:04:05.8964459, finished iteration 7
[2022-03-16 08:48:09.722232] INFO: StockRanker训练: 00:04:38.6089360, finished iteration 8
[2022-03-16 08:48:49.941164] INFO: StockRanker训练: 00:05:12.1448284, finished iteration 9
[2022-03-16 08:49:10.033044] INFO: StockRanker训练: 00:05:38.7166348, finished iteration 10
[2022-03-16 08:49:40.180504] INFO: StockRanker训练: 00:06:05.7384898, finished iteration 11
[2022-03-16 08:50:10.338036] INFO: StockRanker训练: 00:06:32.8921324, finished iteration 12
[2022-03-16 08:50:40.559877] INFO: StockRanker训练: 00:07:05.0854614, finished iteration 13
[2022-03-16 08:51:10.801808] INFO: StockRanker训练: 00:07:35.6538452, finished iteration 14
[2022-03-16 08:51:41.015053] INFO: StockRanker训练: 00:08:04.8622168, finished iteration 15
[2022-03-16 08:52:01.154928] INFO: StockRanker训练: 00:08:30.6953311, finished iteration 16
[2022-03-16 08:52:31.311358] INFO: StockRanker训练: 00:08:54.2826591, finished iteration 17
[2022-03-16 08:52:51.435562] INFO: StockRanker训练: 00:09:18.0141494, finished iteration 18
[2022-03-16 08:53:11.539451] INFO: StockRanker训练: 00:09:41.1495868, finished iteration 19
[2022-03-16 08:53:41.689806] INFO: StockRanker训练: 00:10:05.3032403, finished iteration 20
[2022-03-16 08:54:01.800594] INFO: StockRanker训练: 00:10:29.9747393, finished iteration 21
[2022-03-16 08:54:31.955192] INFO: StockRanker训练: 00:10:54.3342730, finished iteration 22
[2022-03-16 08:54:52.068553] INFO: StockRanker训练: 00:11:18.8291711, finished iteration 23
[2022-03-16 08:55:22.203703] INFO: StockRanker训练: 00:11:44.3056519, finished iteration 24
[2022-03-16 08:55:42.332955] INFO: StockRanker训练: 00:12:09.1535709, finished iteration 25
[2022-03-16 08:56:12.708633] INFO: StockRanker训练: 00:12:33.3186242, finished iteration 26
[2022-03-16 08:56:32.864088] INFO: StockRanker训练: 00:12:57.1616735, finished iteration 27
[2022-03-16 08:56:52.960378] INFO: StockRanker训练: 00:13:20.5052408, finished iteration 28
[2022-03-16 08:57:23.104359] INFO: StockRanker训练: 00:13:44.7211424, finished iteration 29
[2022-03-16 08:57:43.218179] INFO: StockRanker训练: 00:14:09.0160261, finished iteration 30
[2022-03-16 08:58:03.314580] INFO: StockRanker训练: 00:14:32.7934509, finished iteration 31
[2022-03-16 08:58:33.474095] INFO: StockRanker训练: 00:14:56.1669741, finished iteration 32
[2022-03-16 08:58:53.565957] INFO: StockRanker训练: 00:15:19.8241078, finished iteration 33
[2022-03-16 08:59:23.709836] INFO: StockRanker训练: 00:15:44.0495940, finished iteration 34
[2022-03-16 09:00:34.171156] INFO: StockRanker训练: 00:16:57.6031653, finished iteration 37
[2022-03-16 09:00:54.279765] INFO: StockRanker训练: 00:17:21.9303216, finished iteration 38
[2022-03-16 09:01:24.465137] INFO: StockRanker训练: 00:17:46.4885673, finished iteration 39
[2022-03-16 09:01:44.593547] INFO: StockRanker训练: 00:18:10.5964185, finished iteration 40
[2022-03-16 09:02:34.850614] INFO: StockRanker训练: 00:18:58.7497246, finished iteration 42
[2022-03-16 09:02:54.945930] INFO: StockRanker训练: 00:19:22.5695915, finished iteration 43
[2022-03-16 09:03:25.096958] INFO: StockRanker训练: 00:19:46.2549166, finished iteration 44
[2022-03-16 09:03:45.370846] INFO: StockRanker训练: 00:20:11.7847711, finished iteration 45
[2022-03-16 09:04:15.517937] INFO: StockRanker训练: 00:20:37.2462248, finished iteration 46
[2022-03-16 09:04:35.604639] INFO: StockRanker训练: 00:21:01.6898667, finished iteration 47
[2022-03-16 09:04:55.724511] INFO: StockRanker训练: 00:21:25.1433395, finished iteration 48
[2022-03-16 09:05:25.918623] INFO: StockRanker训练: 00:21:49.1028190, finished iteration 49
[2022-03-16 09:05:46.021767] INFO: StockRanker训练: 00:22:13.3626482, finished iteration 50
[2022-03-16 09:06:16.167801] INFO: StockRanker训练: 00:22:37.1984071, finished iteration 51
[2022-03-16 09:06:36.267939] INFO: StockRanker训练: 00:23:00.6927359, finished iteration 52
[2022-03-16 09:06:56.390965] INFO: StockRanker训练: 00:23:24.4801400, finished iteration 53
[2022-03-16 09:07:26.544786] INFO: StockRanker训练: 00:23:50.0039117, finished iteration 54
[2022-03-16 09:07:46.654820] INFO: StockRanker训练: 00:24:14.4564231, finished iteration 55
[2022-03-16 09:08:16.879834] INFO: StockRanker训练: 00:24:39.5252406, finished iteration 56
[2022-03-16 09:08:36.972606] INFO: StockRanker训练: 00:25:03.2442963, finished iteration 57
[2022-03-16 09:09:07.115827] INFO: StockRanker训练: 00:25:27.3175156, finished iteration 58
[2022-03-16 09:09:27.207195] INFO: StockRanker训练: 00:25:50.8565925, finished iteration 59
[2022-03-16 09:09:47.393196] INFO: StockRanker训练: 00:26:14.6769416, finished iteration 60
[2022-03-16 09:09:57.438907] INFO: StockRanker训练: 任务状态: Succeeded
[2022-03-16 09:09:57.742975] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[1653.211457s].
[2022-03-16 09:09:57.760359] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-16 09:09:57.928712] INFO: moduleinvoker: instruments.v2 运行完成[0.168377s].
[2022-03-16 09:09:57.955490] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-16 09:10:01.916777] INFO: 基础特征抽取: 年份 2017, 特征行数=256263
[2022-03-16 09:10:06.788776] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2022-03-16 09:10:12.257423] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2022-03-16 09:10:17.693132] INFO: 基础特征抽取: 年份 2020, 特征行数=855949
[2022-03-16 09:10:17.811414] INFO: 基础特征抽取: 总行数: 2814066
[2022-03-16 09:10:17.819607] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[19.864124s].
[2022-03-16 09:10:17.827903] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-16 09:10:27.759235] INFO: derived_feature_extractor: 提取完成 Alpha_1=-1*rank((ts_max(high_0,20)+ts_min(low_0,20)-open_20-close_0)), 5.000s
[2022-03-16 09:10:32.890654] INFO: derived_feature_extractor: 提取完成 Alpha_2=-1*rank((close_0-open_20)/(ts_max(high_0,20)-ts_min(low_0,20))), 5.130s
[2022-03-16 09:10:39.629375] INFO: derived_feature_extractor: 提取完成 Alpha_3=rank(-1*(ts_max(close_0,20)-close_0)/(ts_max(close_0,20)-ts_min(close_0,20))), 6.737s
[2022-03-16 09:10:42.747872] INFO: derived_feature_extractor: 提取完成 Alpha_4=rank(sum(amount_0*sign(max(open_0+close_0-high_0-low_0,close_0-open_0)/max(high_0-close_1,high_0-low_0,close_1-low_0)-0.1),20)), 3.117s
[2022-03-16 09:10:44.187761] INFO: derived_feature_extractor: 提取完成 Alpha_5=rank(return_20), 1.438s
[2022-03-16 09:10:45.007615] INFO: derived_feature_extractor: /y_2017, 256263
[2022-03-16 09:10:46.442683] INFO: derived_feature_extractor: /y_2018, 816987
[2022-03-16 09:10:48.272506] INFO: derived_feature_extractor: /y_2019, 884867
[2022-03-16 09:10:50.087546] INFO: derived_feature_extractor: /y_2020, 855949
[2022-03-16 09:10:50.624380] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[32.796455s].
[2022-03-16 09:10:50.636217] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2022-03-16 09:10:51.686371] INFO: A股股票过滤: 过滤 /y_2017, 251995/0/256263
[2022-03-16 09:10:54.503671] INFO: A股股票过滤: 过滤 /y_2018, 800233/0/816987
[2022-03-16 09:10:57.514187] INFO: A股股票过滤: 过滤 /y_2019, 852507/0/884867
[2022-03-16 09:11:00.484033] INFO: A股股票过滤: 过滤 /y_2020, 789268/0/855949
[2022-03-16 09:11:00.490928] INFO: A股股票过滤: 过滤完成, 2694003 + 0
[2022-03-16 09:11:00.554928] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[9.91872s].
[2022-03-16 09:11:00.564571] INFO: moduleinvoker: dropnan.v2 开始运行..
[2022-03-16 09:11:00.825659] INFO: dropnan: /y_2017, 188490/251995
[2022-03-16 09:11:01.389364] INFO: dropnan: /y_2018, 796836/800233
[2022-03-16 09:11:02.079539] INFO: dropnan: /y_2019, 849723/852507
[2022-03-16 09:11:02.722572] INFO: dropnan: /y_2020, 784752/789268
[2022-03-16 09:11:02.860080] INFO: dropnan: 行数: 2619801/2694003
[2022-03-16 09:11:02.871392] INFO: moduleinvoker: dropnan.v2 运行完成[2.306816s].
[2022-03-16 09:11:02.886327] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-03-16 09:11:03.209456] INFO: StockRanker预测: /y_2017 ..
[2022-03-16 09:11:04.542307] INFO: StockRanker预测: /y_2018 ..
[2022-03-16 09:11:09.056030] INFO: StockRanker预测: /y_2019 ..
[2022-03-16 09:11:13.458520] INFO: StockRanker预测: /y_2020 ..
[2022-03-16 09:11:20.364519] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[17.478182s].
[2022-03-16 09:11:22.008018] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-03-16 09:11:22.014482] INFO: backtest: biglearning backtest:V8.6.2
[2022-03-16 09:11:22.015572] INFO: backtest: product_type:stock by specified
[2022-03-16 09:11:22.105767] INFO: moduleinvoker: cached.v2 开始运行..
[2022-03-16 09:11:31.258282] INFO: backtest: 读取股票行情完成:3695596
[2022-03-16 09:11:33.810454] INFO: moduleinvoker: cached.v2 运行完成[11.70468s].
[2022-03-16 09:11:36.827297] INFO: algo: TradingAlgorithm V1.8.7
[2022-03-16 09:11:38.276218] INFO: algo: trading transform...
[2022-03-16 09:11:55.537233] INFO: Performance: Simulated 708 trading days out of 708.
[2022-03-16 09:11:55.538720] INFO: Performance: first open: 2018-01-02 09:30:00+00:00
[2022-03-16 09:11:55.539806] INFO: Performance: last close: 2020-12-01 15:00:00+00:00
[2022-03-16 09:12:06.054646] INFO: moduleinvoker: backtest.v8 运行完成[44.046621s].
[2022-03-16 09:12:06.056251] INFO: moduleinvoker: trade.v4 运行完成[45.682983s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-5003ebfe274d4218b9771c19826795d3"}/bigcharts-data-end
- 收益率186.27%
- 年化收益率45.41%
- 基准收益率25.71%
- 阿尔法0.39
- 贝塔0.61
- 夏普比率1.58
- 胜率0.54
- 盈亏比1.44
- 收益波动率23.55%
- 信息比率0.09
- 最大回撤11.94%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-d2412daf7fe14e2f8e44f5e1b470a86c"}/bigcharts-data-end