{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-276:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-266:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-298:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-293:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-141:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-266:input_1","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-2431:input_2","from_node_id":"-129:data"},{"to_node_id":"-298:input_1","from_node_id":"-129:data"},{"to_node_id":"-168:inputs","from_node_id":"-160:data"},{"to_node_id":"-682:inputs","from_node_id":"-160:data"},{"to_node_id":"-224:inputs","from_node_id":"-168:data"},{"to_node_id":"-231:inputs","from_node_id":"-196:data"},{"to_node_id":"-196:inputs","from_node_id":"-224:data"},{"to_node_id":"-238:inputs","from_node_id":"-231:data"},{"to_node_id":"-682:outputs","from_node_id":"-238:data"},{"to_node_id":"-1098:input_model","from_node_id":"-682:data"},{"to_node_id":"-1540:trained_model","from_node_id":"-1098:data"},{"to_node_id":"-2431:input_1","from_node_id":"-1540:data"},{"to_node_id":"-141:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"-436:input_1","from_node_id":"-243:data"},{"to_node_id":"-1540:input_data","from_node_id":"-251:data"},{"to_node_id":"-1098:training_data","from_node_id":"-436:data_1"},{"to_node_id":"-1098:validation_data","from_node_id":"-436:data_2"},{"to_node_id":"-288:input_data","from_node_id":"-266:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-288:data"},{"to_node_id":"-251:input_data","from_node_id":"-293:data"},{"to_node_id":"-293:input_data","from_node_id":"-298:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-276:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2017-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -22) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"mean(close_0, 22)\nmean(low_0, 22)\nmean(open_0, 22)\nmean(high_0, 22)\nmean(turn_0, 22)\nmean(amount_0, 22)\nmean(return_0, 22)\n \nts_max(close_0, 22)\nts_max(low_0, 22)\nts_max(open_0, 22)\nts_max(high_0, 22)\nts_max(turn_0, 22)\nts_max(amount_0, 22)\nts_max(return_0, 22)\n \nts_min(close_0, 22)\nts_min(low_0, 22)\nts_min(open_0, 22)\nts_min(high_0, 22)\nts_min(turn_0, 22)\nts_min(amount_0, 22)\nts_min(return_0, 22) \n \nstd(close_0, 22)\nstd(low_0, 22)\nstd(open_0, 22)\nstd(high_0, 22)\nstd(turn_0, 22)\nstd(amount_0, 22)\nstd(return_0, 22)\n \nts_rank(close_0, 22)\nts_rank(low_0, 22)\nts_rank(open_0, 22)\nts_rank(high_0, 22)\nts_rank(turn_0, 22)\nts_rank(amount_0, 22)\nts_rank(return_0, 22)\n \ndecay_linear(close_0, 22)\ndecay_linear(low_0, 22)\ndecay_linear(open_0, 22)\ndecay_linear(high_0, 22)\ndecay_linear(turn_0, 22)\ndecay_linear(amount_0, 22)\ndecay_linear(return_0, 22)\n \ncorrelation(volume_0, return_0, 22)\ncorrelation(volume_0, high_0, 22)\ncorrelation(volume_0, low_0, 22)\ncorrelation(volume_0, close_0, 22)\ncorrelation(volume_0, open_0, 22)\ncorrelation(volume_0, turn_0, 22)\n \ncorrelation(return_0, high_0, 22)\ncorrelation(return_0, low_0, 22)\ncorrelation(return_0, close_0, 22)\ncorrelation(return_0, open_0, 22)\ncorrelation(return_0, turn_0, 22)\n \ncorrelation(high_0, low_0, 22)\ncorrelation(high_0, close_0, 22)\ncorrelation(high_0, open_0, 22)\ncorrelation(high_0, turn_0, 22)\n \ncorrelation(low_0, close_0, 22)\ncorrelation(low_0, open_0, 22)\ncorrelation(low_0, turn_0, 22)\n \ncorrelation(close_0, open_0, 22)\ncorrelation(close_0, turn_0, 22)\n\ncorrelation(open_0, turn_0, 22)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 20\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 22\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"63","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-168","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"256","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-168"}],"output_ports":[{"name":"data","node_id":"-168"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-196","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"128","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-196"}],"output_ports":[{"name":"data","node_id":"-196"}],"cacheable":false,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-224","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-224"}],"output_ports":[{"name":"data","node_id":"-224"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":false,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":false,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-682","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-682"},{"name":"outputs","node_id":"-682"}],"output_ports":[{"name":"data","node_id":"-682"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-1098","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"30","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"from tensorflow.keras.callbacks import EarlyStopping\nbigquant_run=EarlyStopping(monitor='val_mse', min_delta=0.0001, patience=5)","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"0","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-1098"},{"name":"training_data","node_id":"-1098"},{"name":"validation_data","node_id":"-1098"}],"output_ports":[{"name":"data","node_id":"-1098"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-1540","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-1540"},{"name":"input_data","node_id":"-1540"}],"output_ports":[{"name":"data","node_id":"-1540"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-436","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n data = input_1.read()\n x_train, x_val, y_train, y_val = train_test_split(data[\"x\"], data['y'])\n data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})\n data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-436"},{"name":"input_2","node_id":"-436"},{"name":"input_3","node_id":"-436"}],"output_ports":[{"name":"data_1","node_id":"-436"},{"name":"data_2","node_id":"-436"},{"name":"data_3","node_id":"-436"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-266","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-266"},{"name":"input_2","node_id":"-266"}],"output_ports":[{"name":"data","node_id":"-266"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-293"},{"name":"features","node_id":"-293"}],"output_ports":[{"name":"data","node_id":"-293"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-298","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-298"},{"name":"input_2","node_id":"-298"}],"output_ports":[{"name":"data","node_id":"-298"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-276","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-276"},{"name":"input_2","node_id":"-276"}],"output_ports":[{"name":"data","node_id":"-276"}],"cacheable":true,"seq_num":29,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='261,29,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='113,177,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='734,13,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='291,505,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1154,78,200,200'/><node_position Node='-106' Position='400,166,200,200'/><node_position Node='-113' Position='444,238,200,200'/><node_position Node='-122' Position='1146,284,200,200'/><node_position Node='-129' Position='1156,392,200,200'/><node_position Node='-141' Position='601,1134,200,200'/><node_position Node='-160' Position='-202,35,200,200'/><node_position Node='-168' Position='-198,146,200,200'/><node_position Node='-196' Position='-203,311,200,200'/><node_position Node='-224' Position='-203,240,200,200'/><node_position Node='-231' Position='-201,395,200,200'/><node_position Node='-238' Position='-195,470,200,200'/><node_position Node='-682' Position='-194,561,200,200'/><node_position Node='-1098' Position='49,772,200,200'/><node_position Node='-1540' Position='214,896,200,200'/><node_position Node='-2431' Position='432,986,200,200'/><node_position Node='-243' Position='308,578,200,200'/><node_position Node='-251' Position='1147,690,200,200'/><node_position Node='-436' Position='281,664,200,200'/><node_position Node='-266' Position='467,322,200,200'/><node_position Node='-288' Position='479,426,200,200'/><node_position Node='-293' Position='1150,600,200,200'/><node_position Node='-298' Position='1130,499,200,200'/><node_position Node='-276' Position='102,255,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-07-30 10:08:10.035976] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-07-30 10:08:10.598000] INFO: moduleinvoker: 命中缓存
[2022-07-30 10:08:10.610958] INFO: moduleinvoker: instruments.v2 运行完成[0.580056s].
[2022-07-30 10:08:10.636822] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-07-30 10:08:10.646180] INFO: moduleinvoker: 命中缓存
[2022-07-30 10:08:10.657084] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.02027s].
[2022-07-30 10:08:10.676878] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-07-30 10:08:10.686966] INFO: moduleinvoker: 命中缓存
[2022-07-30 10:08:10.692688] INFO: moduleinvoker: standardlize.v8 运行完成[0.015809s].
[2022-07-30 10:08:10.713399] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-07-30 10:08:10.803582] INFO: moduleinvoker: input_features.v1 运行完成[0.090212s].
[2022-07-30 10:08:10.851606] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-07-30 10:08:17.853041] INFO: 基础特征抽取: 年份 2017, 特征行数=743233
[2022-07-30 10:08:20.434688] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2022-07-30 10:08:23.047524] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2022-07-30 10:08:25.748869] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2022-07-30 10:08:25.935547] INFO: 基础特征抽取: 总行数: 3391048
[2022-07-30 10:08:25.948294] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[15.09631s].
[2022-07-30 10:08:25.960470] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-07-30 10:08:34.957499] INFO: derived_feature_extractor: 提取完成 mean(close_0, 22), 2.803s
[2022-07-30 10:08:37.266044] INFO: derived_feature_extractor: 提取完成 mean(low_0, 22), 2.307s
[2022-07-30 10:08:39.608982] INFO: derived_feature_extractor: 提取完成 mean(open_0, 22), 2.341s
[2022-07-30 10:08:41.851397] INFO: derived_feature_extractor: 提取完成 mean(high_0, 22), 2.241s
[2022-07-30 10:08:44.177421] INFO: derived_feature_extractor: 提取完成 mean(turn_0, 22), 2.324s
[2022-07-30 10:08:46.476841] INFO: derived_feature_extractor: 提取完成 mean(amount_0, 22), 2.298s
[2022-07-30 10:08:48.749323] INFO: derived_feature_extractor: 提取完成 mean(return_0, 22), 2.271s
[2022-07-30 10:08:51.076340] INFO: derived_feature_extractor: 提取完成 ts_max(close_0, 22), 2.325s
[2022-07-30 10:08:53.638312] INFO: derived_feature_extractor: 提取完成 ts_max(low_0, 22), 2.560s
[2022-07-30 10:08:56.125980] INFO: derived_feature_extractor: 提取完成 ts_max(open_0, 22), 2.486s
[2022-07-30 10:08:58.582810] INFO: derived_feature_extractor: 提取完成 ts_max(high_0, 22), 2.454s
[2022-07-30 10:09:01.027552] INFO: derived_feature_extractor: 提取完成 ts_max(turn_0, 22), 2.443s
[2022-07-30 10:09:03.773708] INFO: derived_feature_extractor: 提取完成 ts_max(amount_0, 22), 2.745s
[2022-07-30 10:09:06.539088] INFO: derived_feature_extractor: 提取完成 ts_max(return_0, 22), 2.764s
[2022-07-30 10:09:09.155942] INFO: derived_feature_extractor: 提取完成 ts_min(close_0, 22), 2.615s
[2022-07-30 10:09:11.674287] INFO: derived_feature_extractor: 提取完成 ts_min(low_0, 22), 2.517s
[2022-07-30 10:09:14.226750] INFO: derived_feature_extractor: 提取完成 ts_min(open_0, 22), 2.551s
[2022-07-30 10:09:16.685193] INFO: derived_feature_extractor: 提取完成 ts_min(high_0, 22), 2.457s
[2022-07-30 10:09:19.206524] INFO: derived_feature_extractor: 提取完成 ts_min(turn_0, 22), 2.520s
[2022-07-30 10:09:21.682700] INFO: derived_feature_extractor: 提取完成 ts_min(amount_0, 22), 2.474s
[2022-07-30 10:09:24.135379] INFO: derived_feature_extractor: 提取完成 ts_min(return_0, 22), 2.451s
[2022-07-30 10:09:26.512024] INFO: derived_feature_extractor: 提取完成 std(close_0, 22), 2.375s
[2022-07-30 10:09:28.854849] INFO: derived_feature_extractor: 提取完成 std(low_0, 22), 2.341s
[2022-07-30 10:09:31.337106] INFO: derived_feature_extractor: 提取完成 std(open_0, 22), 2.480s
[2022-07-30 10:09:33.746720] INFO: derived_feature_extractor: 提取完成 std(high_0, 22), 2.407s
[2022-07-30 10:09:36.203796] INFO: derived_feature_extractor: 提取完成 std(turn_0, 22), 2.455s
[2022-07-30 10:09:38.663421] INFO: derived_feature_extractor: 提取完成 std(amount_0, 22), 2.458s
[2022-07-30 10:09:41.070015] INFO: derived_feature_extractor: 提取完成 std(return_0, 22), 2.405s
[2022-07-30 10:09:53.151149] INFO: derived_feature_extractor: 提取完成 ts_rank(close_0, 22), 12.079s
[2022-07-30 10:10:05.101098] INFO: derived_feature_extractor: 提取完成 ts_rank(low_0, 22), 11.947s
[2022-07-30 10:10:17.343391] INFO: derived_feature_extractor: 提取完成 ts_rank(open_0, 22), 12.240s
[2022-07-30 10:10:29.635479] INFO: derived_feature_extractor: 提取完成 ts_rank(high_0, 22), 12.290s
[2022-07-30 10:10:42.621691] INFO: derived_feature_extractor: 提取完成 ts_rank(turn_0, 22), 12.984s
[2022-07-30 10:10:54.641460] INFO: derived_feature_extractor: 提取完成 ts_rank(amount_0, 22), 12.018s
[2022-07-30 10:11:06.866351] INFO: derived_feature_extractor: 提取完成 ts_rank(return_0, 22), 12.223s
[2022-07-30 10:11:22.778670] INFO: derived_feature_extractor: 提取完成 decay_linear(close_0, 22), 15.910s
[2022-07-30 10:11:30.441891] INFO: derived_feature_extractor: 提取完成 decay_linear(low_0, 22), 7.661s
[2022-07-30 10:11:37.698035] INFO: derived_feature_extractor: 提取完成 decay_linear(open_0, 22), 7.254s
[2022-07-30 10:11:44.520243] INFO: derived_feature_extractor: 提取完成 decay_linear(high_0, 22), 6.820s
[2022-07-30 10:11:51.643756] INFO: derived_feature_extractor: 提取完成 decay_linear(turn_0, 22), 7.122s
[2022-07-30 10:11:58.531019] INFO: derived_feature_extractor: 提取完成 decay_linear(amount_0, 22), 6.885s
[2022-07-30 10:12:06.151263] INFO: derived_feature_extractor: 提取完成 decay_linear(return_0, 22), 7.618s
[2022-07-30 10:13:04.235996] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, return_0, 22), 58.083s
[2022-07-30 10:13:39.100207] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, high_0, 22), 34.862s
[2022-07-30 10:14:10.181767] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, low_0, 22), 31.079s
[2022-07-30 10:14:40.480214] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, close_0, 22), 30.296s
[2022-07-30 10:15:08.714724] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, open_0, 22), 28.232s
[2022-07-30 10:15:38.196053] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, turn_0, 22), 29.479s
[2022-07-30 10:16:09.526394] INFO: derived_feature_extractor: 提取完成 correlation(return_0, high_0, 22), 31.329s
[2022-07-30 10:16:39.125790] INFO: derived_feature_extractor: 提取完成 correlation(return_0, low_0, 22), 29.597s
[2022-07-30 10:17:09.104325] INFO: derived_feature_extractor: 提取完成 correlation(return_0, close_0, 22), 29.977s
[2022-07-30 10:17:40.887353] INFO: derived_feature_extractor: 提取完成 correlation(return_0, open_0, 22), 31.781s
[2022-07-30 10:18:10.426276] INFO: derived_feature_extractor: 提取完成 correlation(return_0, turn_0, 22), 29.537s
[2022-07-30 10:18:41.382182] INFO: derived_feature_extractor: 提取完成 correlation(high_0, low_0, 22), 30.954s
[2022-07-30 10:19:12.559797] INFO: derived_feature_extractor: 提取完成 correlation(high_0, close_0, 22), 31.175s
[2022-07-30 10:19:41.917543] INFO: derived_feature_extractor: 提取完成 correlation(high_0, open_0, 22), 29.356s
[2022-07-30 10:20:15.729971] INFO: derived_feature_extractor: 提取完成 correlation(high_0, turn_0, 22), 33.811s
[2022-07-30 10:20:48.466862] INFO: derived_feature_extractor: 提取完成 correlation(low_0, close_0, 22), 32.735s
[2022-07-30 10:21:22.452726] INFO: derived_feature_extractor: 提取完成 correlation(low_0, open_0, 22), 33.984s
[2022-07-30 10:21:54.847369] INFO: derived_feature_extractor: 提取完成 correlation(low_0, turn_0, 22), 32.392s
[2022-07-30 10:22:27.206232] INFO: derived_feature_extractor: 提取完成 correlation(close_0, open_0, 22), 32.356s
[2022-07-30 10:23:01.137310] INFO: derived_feature_extractor: 提取完成 correlation(close_0, turn_0, 22), 33.928s
[2022-07-30 10:23:35.159059] INFO: derived_feature_extractor: 提取完成 correlation(open_0, turn_0, 22), 34.020s
[2022-07-30 10:23:53.280110] INFO: derived_feature_extractor: /y_2017, 743233
[2022-07-30 10:23:57.787757] INFO: derived_feature_extractor: /y_2018, 816987
[2022-07-30 10:24:02.744781] INFO: derived_feature_extractor: /y_2019, 884867
[2022-07-30 10:24:08.092599] INFO: derived_feature_extractor: /y_2020, 945961
[2022-07-30 10:24:11.618189] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[945.65771s].
[2022-07-30 10:24:11.625267] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-07-30 10:29:04.675955] INFO: moduleinvoker: standardlize.v8 运行完成[293.050662s].
[2022-07-30 10:29:04.686598] INFO: moduleinvoker: fillnan.v1 开始运行..
[2022-07-30 10:29:25.567686] INFO: moduleinvoker: fillnan.v1 运行完成[20.881081s].
[2022-07-30 10:29:25.582229] INFO: moduleinvoker: join.v3 开始运行..
[2022-07-30 10:30:14.784415] INFO: join: /data, 行数=3201371/3302750, 耗时=43.99291s
[2022-07-30 10:30:15.003613] INFO: join: 最终行数: 3201371
[2022-07-30 10:30:15.027344] INFO: moduleinvoker: join.v3 运行完成[49.445112s].
[2022-07-30 10:30:15.049562] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-07-30 10:30:36.441399] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[21.391889s].
[2022-07-30 10:30:36.458514] INFO: moduleinvoker: cached.v3 开始运行..
[2022-07-30 10:30:46.636901] INFO: moduleinvoker: cached.v3 运行完成[10.178389s].
[2022-07-30 10:30:46.643583] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-07-30 10:30:46.649192] INFO: moduleinvoker: 命中缓存
[2022-07-30 10:30:46.650835] INFO: moduleinvoker: instruments.v2 运行完成[0.007256s].
[2022-07-30 10:30:46.668038] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-07-30 10:30:49.656259] INFO: 基础特征抽取: 年份 2021, 特征行数=1061527
[2022-07-30 10:30:51.667899] INFO: 基础特征抽取: 年份 2022, 特征行数=0
[2022-07-30 10:30:51.725202] INFO: 基础特征抽取: 总行数: 1061527
[2022-07-30 10:30:51.731706] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[5.063666s].
[2022-07-30 10:30:51.742117] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-07-30 10:30:54.266346] INFO: derived_feature_extractor: 提取完成 mean(close_0, 22), 0.732s
[2022-07-30 10:30:54.973234] INFO: derived_feature_extractor: 提取完成 mean(low_0, 22), 0.705s
[2022-07-30 10:30:55.727857] INFO: derived_feature_extractor: 提取完成 mean(open_0, 22), 0.753s
[2022-07-30 10:30:56.453619] INFO: derived_feature_extractor: 提取完成 mean(high_0, 22), 0.723s
[2022-07-30 10:30:57.244719] INFO: derived_feature_extractor: 提取完成 mean(turn_0, 22), 0.789s
[2022-07-30 10:30:58.046412] INFO: derived_feature_extractor: 提取完成 mean(amount_0, 22), 0.800s
[2022-07-30 10:30:58.834674] INFO: derived_feature_extractor: 提取完成 mean(return_0, 22), 0.786s
[2022-07-30 10:30:59.569107] INFO: derived_feature_extractor: 提取完成 ts_max(close_0, 22), 0.733s
[2022-07-30 10:31:00.357371] INFO: derived_feature_extractor: 提取完成 ts_max(low_0, 22), 0.787s
[2022-07-30 10:31:01.083688] INFO: derived_feature_extractor: 提取完成 ts_max(open_0, 22), 0.724s
[2022-07-30 10:31:01.826705] INFO: derived_feature_extractor: 提取完成 ts_max(high_0, 22), 0.741s
[2022-07-30 10:31:02.563204] INFO: derived_feature_extractor: 提取完成 ts_max(turn_0, 22), 0.735s
[2022-07-30 10:31:03.290684] INFO: derived_feature_extractor: 提取完成 ts_max(amount_0, 22), 0.726s
[2022-07-30 10:31:04.122766] INFO: derived_feature_extractor: 提取完成 ts_max(return_0, 22), 0.830s
[2022-07-30 10:31:04.877400] INFO: derived_feature_extractor: 提取完成 ts_min(close_0, 22), 0.753s
[2022-07-30 10:31:05.625458] INFO: derived_feature_extractor: 提取完成 ts_min(low_0, 22), 0.746s
[2022-07-30 10:31:06.383260] INFO: derived_feature_extractor: 提取完成 ts_min(open_0, 22), 0.756s
[2022-07-30 10:31:07.140790] INFO: derived_feature_extractor: 提取完成 ts_min(high_0, 22), 0.756s
[2022-07-30 10:31:07.967400] INFO: derived_feature_extractor: 提取完成 ts_min(turn_0, 22), 0.825s
[2022-07-30 10:31:08.732318] INFO: derived_feature_extractor: 提取完成 ts_min(amount_0, 22), 0.763s
[2022-07-30 10:31:09.468188] INFO: derived_feature_extractor: 提取完成 ts_min(return_0, 22), 0.734s
[2022-07-30 10:31:10.199419] INFO: derived_feature_extractor: 提取完成 std(close_0, 22), 0.729s
[2022-07-30 10:31:10.946662] INFO: derived_feature_extractor: 提取完成 std(low_0, 22), 0.746s
[2022-07-30 10:31:11.656045] INFO: derived_feature_extractor: 提取完成 std(open_0, 22), 0.708s
[2022-07-30 10:31:12.406233] INFO: derived_feature_extractor: 提取完成 std(high_0, 22), 0.748s
[2022-07-30 10:31:13.137790] INFO: derived_feature_extractor: 提取完成 std(turn_0, 22), 0.730s
[2022-07-30 10:31:13.846391] INFO: derived_feature_extractor: 提取完成 std(amount_0, 22), 0.706s
[2022-07-30 10:31:14.573519] INFO: derived_feature_extractor: 提取完成 std(return_0, 22), 0.726s
[2022-07-30 10:31:18.039473] INFO: derived_feature_extractor: 提取完成 ts_rank(close_0, 22), 3.464s
[2022-07-30 10:31:21.477343] INFO: derived_feature_extractor: 提取完成 ts_rank(low_0, 22), 3.436s
[2022-07-30 10:31:24.883613] INFO: derived_feature_extractor: 提取完成 ts_rank(open_0, 22), 3.405s
[2022-07-30 10:31:28.362487] INFO: derived_feature_extractor: 提取完成 ts_rank(high_0, 22), 3.477s
[2022-07-30 10:31:31.886745] INFO: derived_feature_extractor: 提取完成 ts_rank(turn_0, 22), 3.523s
[2022-07-30 10:31:35.697355] INFO: derived_feature_extractor: 提取完成 ts_rank(amount_0, 22), 3.809s
[2022-07-30 10:31:39.207500] INFO: derived_feature_extractor: 提取完成 ts_rank(return_0, 22), 3.508s
[2022-07-30 10:31:41.248548] INFO: derived_feature_extractor: 提取完成 decay_linear(close_0, 22), 2.039s
[2022-07-30 10:31:43.571951] INFO: derived_feature_extractor: 提取完成 decay_linear(low_0, 22), 2.321s
[2022-07-30 10:31:45.841993] INFO: derived_feature_extractor: 提取完成 decay_linear(open_0, 22), 2.268s
[2022-07-30 10:31:48.066158] INFO: derived_feature_extractor: 提取完成 decay_linear(high_0, 22), 2.222s
[2022-07-30 10:31:50.090092] INFO: derived_feature_extractor: 提取完成 decay_linear(turn_0, 22), 2.022s
[2022-07-30 10:31:52.010387] INFO: derived_feature_extractor: 提取完成 decay_linear(amount_0, 22), 1.919s
[2022-07-30 10:31:53.878293] INFO: derived_feature_extractor: 提取完成 decay_linear(return_0, 22), 1.866s
[2022-07-30 10:32:23.484067] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, return_0, 22), 29.604s
[2022-07-30 10:32:54.972992] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, high_0, 22), 31.487s
[2022-07-30 10:33:26.577682] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, low_0, 22), 31.603s
[2022-07-30 10:33:54.950886] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, close_0, 22), 28.372s
[2022-07-30 10:34:25.524025] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, open_0, 22), 30.571s
[2022-07-30 10:34:57.362471] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, turn_0, 22), 31.837s
[2022-07-30 10:35:28.847454] INFO: derived_feature_extractor: 提取完成 correlation(return_0, high_0, 22), 31.483s
[2022-07-30 10:36:00.824988] INFO: derived_feature_extractor: 提取完成 correlation(return_0, low_0, 22), 31.976s
[2022-07-30 10:36:33.379861] INFO: derived_feature_extractor: 提取完成 correlation(return_0, close_0, 22), 32.553s
[2022-07-30 10:37:05.775889] INFO: derived_feature_extractor: 提取完成 correlation(return_0, open_0, 22), 32.394s
[2022-07-30 10:37:38.996816] INFO: derived_feature_extractor: 提取完成 correlation(return_0, turn_0, 22), 33.219s
[2022-07-30 10:38:11.384643] INFO: derived_feature_extractor: 提取完成 correlation(high_0, low_0, 22), 32.386s
[2022-07-30 10:38:44.933520] INFO: derived_feature_extractor: 提取完成 correlation(high_0, close_0, 22), 33.547s
[2022-07-30 10:39:17.780000] INFO: derived_feature_extractor: 提取完成 correlation(high_0, open_0, 22), 32.844s
[2022-07-30 10:39:50.009841] INFO: derived_feature_extractor: 提取完成 correlation(high_0, turn_0, 22), 32.228s
[2022-07-30 10:40:27.162244] INFO: derived_feature_extractor: 提取完成 correlation(low_0, close_0, 22), 37.150s
[2022-07-30 10:40:59.516711] INFO: derived_feature_extractor: 提取完成 correlation(low_0, open_0, 22), 32.353s
[2022-07-30 10:41:30.567267] INFO: derived_feature_extractor: 提取完成 correlation(low_0, turn_0, 22), 31.049s
[2022-07-30 10:42:00.856617] INFO: derived_feature_extractor: 提取完成 correlation(close_0, open_0, 22), 30.288s
[2022-07-30 10:42:32.358948] INFO: derived_feature_extractor: 提取完成 correlation(close_0, turn_0, 22), 31.500s
[2022-07-30 10:43:04.086607] INFO: derived_feature_extractor: 提取完成 correlation(open_0, turn_0, 22), 31.726s
[2022-07-30 10:43:06.854267] INFO: derived_feature_extractor: /y_2021, 1061527
[2022-07-30 10:43:11.275498] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[739.533372s].
[2022-07-30 10:43:11.282205] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-07-30 10:44:21.280156] INFO: moduleinvoker: standardlize.v8 运行完成[69.997935s].
[2022-07-30 10:44:21.290506] INFO: moduleinvoker: fillnan.v1 开始运行..
[2022-07-30 10:44:28.420970] INFO: moduleinvoker: fillnan.v1 运行完成[7.130449s].
[2022-07-30 10:44:28.438970] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-07-30 10:44:33.214724] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[4.775753s].
[2022-07-30 10:44:33.242632] INFO: moduleinvoker: dl_layer_input.v1 运行完成[0.018331s].
[2022-07-30 10:44:33.330666] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.07764s].
[2022-07-30 10:44:33.353702] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.014238s].
[2022-07-30 10:44:33.377539] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.016758s].
[2022-07-30 10:44:33.388630] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.004441s].
[2022-07-30 10:44:33.408707] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.013255s].
[2022-07-30 10:44:33.447680] INFO: moduleinvoker: cached.v3 开始运行..
[2022-07-30 10:44:33.481427] INFO: moduleinvoker: cached.v3 运行完成[0.033746s].
[2022-07-30 10:44:33.483955] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.068688s].
[2022-07-30 10:44:33.488299] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2022-07-30 10:44:36.090799] INFO: dl_model_train: 准备训练,训练样本个数:2401028,迭代次数:30
[2022-07-30 10:53:41.850584] INFO: dl_model_train: 训练结束,耗时:545.76s
[2022-07-30 10:53:41.891338] INFO: moduleinvoker: dl_model_train.v1 运行完成[548.403024s].
[2022-07-30 10:53:41.897010] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2022-07-30 10:53:44.992254] INFO: moduleinvoker: dl_model_predict.v1 运行完成[3.09525s].
[2022-07-30 10:53:45.005913] INFO: moduleinvoker: cached.v3 开始运行..
[2022-07-30 10:53:49.657557] INFO: moduleinvoker: cached.v3 运行完成[4.651657s].
[2022-07-30 10:53:49.732349] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-07-30 10:53:49.738407] INFO: backtest: biglearning backtest:V8.6.2
[2022-07-30 10:53:49.740291] INFO: backtest: product_type:stock by specified
[2022-07-30 10:53:49.891307] INFO: moduleinvoker: cached.v2 开始运行..
[2022-07-30 10:53:49.901610] INFO: moduleinvoker: 命中缓存
[2022-07-30 10:53:49.904048] INFO: moduleinvoker: cached.v2 运行完成[0.012763s].
[2022-07-30 10:53:52.122352] INFO: algo: TradingAlgorithm V1.8.8
[2022-07-30 10:53:52.923332] INFO: algo: trading transform...
[2022-07-30 10:54:04.243855] INFO: Performance: Simulated 243 trading days out of 243.
[2022-07-30 10:54:04.245468] INFO: Performance: first open: 2021-01-04 09:30:00+00:00
[2022-07-30 10:54:04.246672] INFO: Performance: last close: 2021-12-31 15:00:00+00:00
[2022-07-30 10:54:08.481409] INFO: moduleinvoker: backtest.v8 运行完成[18.749019s].
[2022-07-30 10:54:08.483788] INFO: moduleinvoker: trade.v4 运行完成[18.817526s].
Epoch 1/30
2345/2345 - 23s - loss: 0.9694 - mse: 0.9694 - val_loss: 0.9622 - val_mse: 0.9622
Epoch 2/30
2345/2345 - 18s - loss: 0.9618 - mse: 0.9618 - val_loss: 0.9551 - val_mse: 0.9551
Epoch 3/30
2345/2345 - 18s - loss: 0.9575 - mse: 0.9575 - val_loss: 0.9512 - val_mse: 0.9512
Epoch 4/30
2345/2345 - 19s - loss: 0.9537 - mse: 0.9537 - val_loss: 0.9471 - val_mse: 0.9471
Epoch 5/30
2345/2345 - 19s - loss: 0.9502 - mse: 0.9502 - val_loss: 0.9437 - val_mse: 0.9437
Epoch 6/30
2345/2345 - 18s - loss: 0.9470 - mse: 0.9470 - val_loss: 0.9410 - val_mse: 0.9410
Epoch 7/30
2345/2345 - 18s - loss: 0.9444 - mse: 0.9444 - val_loss: 0.9385 - val_mse: 0.9385
Epoch 8/30
2345/2345 - 19s - loss: 0.9416 - mse: 0.9416 - val_loss: 0.9366 - val_mse: 0.9366
Epoch 9/30
2345/2345 - 19s - loss: 0.9391 - mse: 0.9391 - val_loss: 0.9338 - val_mse: 0.9338
Epoch 10/30
2345/2345 - 19s - loss: 0.9365 - mse: 0.9365 - val_loss: 0.9322 - val_mse: 0.9322
Epoch 11/30
2345/2345 - 18s - loss: 0.9337 - mse: 0.9337 - val_loss: 0.9306 - val_mse: 0.9306
Epoch 12/30
2345/2345 - 18s - loss: 0.9316 - mse: 0.9316 - val_loss: 0.9280 - val_mse: 0.9280
Epoch 13/30
2345/2345 - 18s - loss: 0.9299 - mse: 0.9299 - val_loss: 0.9249 - val_mse: 0.9249
Epoch 14/30
2345/2345 - 18s - loss: 0.9274 - mse: 0.9274 - val_loss: 0.9237 - val_mse: 0.9237
Epoch 15/30
2345/2345 - 18s - loss: 0.9254 - mse: 0.9254 - val_loss: 0.9213 - val_mse: 0.9213
Epoch 16/30
2345/2345 - 18s - loss: 0.9239 - mse: 0.9239 - val_loss: 0.9213 - val_mse: 0.9213
Epoch 17/30
2345/2345 - 18s - loss: 0.9222 - mse: 0.9222 - val_loss: 0.9173 - val_mse: 0.9173
Epoch 18/30
2345/2345 - 18s - loss: 0.9205 - mse: 0.9205 - val_loss: 0.9160 - val_mse: 0.9160
Epoch 19/30
2345/2345 - 18s - loss: 0.9196 - mse: 0.9196 - val_loss: 0.9158 - val_mse: 0.9158
Epoch 20/30
2345/2345 - 18s - loss: 0.9180 - mse: 0.9180 - val_loss: 0.9142 - val_mse: 0.9142
Epoch 21/30
2345/2345 - 17s - loss: 0.9163 - mse: 0.9163 - val_loss: 0.9139 - val_mse: 0.9139
Epoch 22/30
2345/2345 - 18s - loss: 0.9150 - mse: 0.9150 - val_loss: 0.9111 - val_mse: 0.9111
Epoch 23/30
2345/2345 - 18s - loss: 0.9139 - mse: 0.9139 - val_loss: 0.9119 - val_mse: 0.9119
Epoch 24/30
2345/2345 - 18s - loss: 0.9125 - mse: 0.9125 - val_loss: 0.9100 - val_mse: 0.9100
Epoch 25/30
2345/2345 - 18s - loss: 0.9114 - mse: 0.9114 - val_loss: 0.9090 - val_mse: 0.9090
Epoch 26/30
2345/2345 - 18s - loss: 0.9107 - mse: 0.9107 - val_loss: 0.9079 - val_mse: 0.9079
Epoch 27/30
2345/2345 - 18s - loss: 0.9091 - mse: 0.9091 - val_loss: 0.9080 - val_mse: 0.9080
Epoch 28/30
2345/2345 - 18s - loss: 0.9081 - mse: 0.9081 - val_loss: 0.9063 - val_mse: 0.9063
Epoch 29/30
2345/2345 - 18s - loss: 0.9072 - mse: 0.9072 - val_loss: 0.9056 - val_mse: 0.9056
Epoch 30/30
2345/2345 - 17s - loss: 0.9065 - mse: 0.9065 - val_loss: 0.9037 - val_mse: 0.9037
941/941 - 2s
DataSource(fe22061fe33949a4a616c89f36a49a74T)
- 收益率29.34%
- 年化收益率30.58%
- 基准收益率-5.2%
- 阿尔法0.33
- 贝塔0.4
- 夏普比率1.22
- 胜率0.54
- 盈亏比1.57
- 收益波动率21.36%
- 信息比率0.09
- 最大回撤11.12%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-a2d4e5f5211148a8a7adb69ff443bd62"}/bigcharts-data-end