克隆策略
In [8]:
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
tf.config.experimental.set_memory_growth(gpus[0], True)
In [9]:
from tensorflow.keras import optimizers

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-773:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-778:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3895:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3984:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-7618:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-7623:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-6044:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-6044:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-141:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-3984:input_1","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-2431:input_2","from_node_id":"-129:data"},{"to_node_id":"-778:input_1","from_node_id":"-129:data"},{"to_node_id":"-3880:inputs","from_node_id":"-160:data"},{"to_node_id":"-1452:inputs","from_node_id":"-160:data"},{"to_node_id":"-2431:input_1","from_node_id":"-1540:data"},{"to_node_id":"-141:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-773:data"},{"to_node_id":"-7623:input_data","from_node_id":"-778:data"},{"to_node_id":"-1540:input_data","from_node_id":"-251:data"},{"to_node_id":"-759:input_model","from_node_id":"-3880:data"},{"to_node_id":"-759:training_data","from_node_id":"-3895:data_1"},{"to_node_id":"-759:validation_data","from_node_id":"-3895:data_2"},{"to_node_id":"-7618:input_data","from_node_id":"-3984:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-7618:data"},{"to_node_id":"-251:input_data","from_node_id":"-7623:data"},{"to_node_id":"-3895:input_1","from_node_id":"-6044:data"},{"to_node_id":"-1540:trained_model","from_node_id":"-759:data"},{"to_node_id":"-1557:inputs","from_node_id":"-1452:data"},{"to_node_id":"-8291:inputs","from_node_id":"-1557:data"},{"to_node_id":"-1664:inputs","from_node_id":"-1632:data"},{"to_node_id":"-1919:input2","from_node_id":"-1632:data"},{"to_node_id":"-1700:inputs","from_node_id":"-1664:data"},{"to_node_id":"-1732:inputs","from_node_id":"-1700:data"},{"to_node_id":"-1768:inputs","from_node_id":"-1732:data"},{"to_node_id":"-1301:inputs","from_node_id":"-1768:data"},{"to_node_id":"-3880:outputs","from_node_id":"-1818:data"},{"to_node_id":"-2388:inputs","from_node_id":"-1919:data"},{"to_node_id":"-1818:inputs","from_node_id":"-1910:data"},{"to_node_id":"-8323:inputs","from_node_id":"-26538:data"},{"to_node_id":"-26538:inputs","from_node_id":"-8291:data"},{"to_node_id":"-1632:inputs","from_node_id":"-8323:data"},{"to_node_id":"-1330:inputs","from_node_id":"-1301:data"},{"to_node_id":"-1919:input1","from_node_id":"-1330:data"},{"to_node_id":"-1910:inputs","from_node_id":"-2388:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2017-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1) - 1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0\nopen_0\nhigh_0\nlow_0 \namount_0\nturn_0 \nreturn_0\n\nclose_1\nopen_1\nhigh_1\nlow_1\nreturn_1\namount_1\nturn_1\n \nclose_2\nopen_2\nhigh_2\nlow_2\namount_2\nturn_2\nreturn_2\n \nclose_3\nopen_3\nhigh_3\nlow_3\namount_3\nturn_3\nreturn_3\n \nclose_4\nopen_4\nhigh_4\nlow_4\namount_4\nturn_4\nreturn_4\n \nmean(close_0, 5)\nmean(low_0, 5)\nmean(open_0, 5)\nmean(high_0, 5)\nmean(turn_0, 5)\nmean(amount_0, 5)\nmean(return_0, 5)\n \nts_max(close_0, 5)\nts_max(low_0, 5)\nts_max(open_0, 5)\nts_max(high_0, 5)\nts_max(turn_0, 5)\nts_max(amount_0, 5)\nts_max(return_0, 5)\n \nts_min(close_0, 5)\nts_min(low_0, 5)\nts_min(open_0, 5)\nts_min(high_0, 5)\nts_min(turn_0, 5)\nts_min(amount_0, 5)\nts_min(return_0, 5) \n \nstd(close_0, 5)\nstd(low_0, 5)\nstd(open_0, 5)\nstd(high_0, 5)\nstd(turn_0, 5)\nstd(amount_0, 5)\nstd(return_0, 5)\n \nts_rank(close_0, 5)\nts_rank(low_0, 5)\nts_rank(open_0, 5)\nts_rank(high_0, 5)\nts_rank(turn_0, 5)\nts_rank(amount_0, 5)\nts_rank(return_0, 5)\n \ndecay_linear(close_0, 5)\ndecay_linear(low_0, 5)\ndecay_linear(open_0, 5)\ndecay_linear(high_0, 5)\ndecay_linear(turn_0, 5)\ndecay_linear(amount_0, 5)\ndecay_linear(return_0, 5)\n \ncorrelation(volume_0, return_0, 5)\ncorrelation(volume_0, high_0, 5)\ncorrelation(volume_0, low_0, 5)\ncorrelation(volume_0, close_0, 5)\ncorrelation(volume_0, open_0, 5)\ncorrelation(volume_0, turn_0, 5)\n \ncorrelation(return_0, high_0, 5)\ncorrelation(return_0, low_0, 5)\ncorrelation(return_0, close_0, 5)\ncorrelation(return_0, open_0, 5)\ncorrelation(return_0, turn_0, 5)\n \ncorrelation(high_0, low_0, 5)\ncorrelation(high_0, close_0, 5)\ncorrelation(high_0, open_0, 5)\ncorrelation(high_0, turn_0, 5)\n \ncorrelation(low_0, close_0, 5)\ncorrelation(low_0, open_0, 5)\ncorrelation(low_0, turn_0, 5)\n \ncorrelation(close_0, open_0, 5)\ncorrelation(close_0, turn_0, 5)\ncorrelation(open_0, turn_0, 5)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-10-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0003, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 20\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.05\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0.025","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"98,1","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-1540","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"1","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-1540"},{"name":"input_data","node_id":"-1540"}],"output_ports":[{"name":"data","node_id":"-1540"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-773","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-773"},{"name":"input_2","node_id":"-773"}],"output_ports":[{"name":"data","node_id":"-773"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-778","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-778"},{"name":"input_2","node_id":"-778"}],"output_ports":[{"name":"data","node_id":"-778"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"1","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"5","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-3880","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-3880"},{"name":"outputs","node_id":"-3880"}],"output_ports":[{"name":"data","node_id":"-3880"}],"cacheable":false,"seq_num":34,"comment":"","comment_collapsed":true},{"node_id":"-3895","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n data = input_1.read()\n x_train, x_val, y_train, y_val = train_test_split(data[\"x\"], data['y'], shuffle=False, test_size=0.2)\n data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})\n data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3895"},{"name":"input_2","node_id":"-3895"},{"name":"input_3","node_id":"-3895"}],"output_ports":[{"name":"data_1","node_id":"-3895"},{"name":"data_2","node_id":"-3895"},{"name":"data_3","node_id":"-3895"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-3984","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3984"},{"name":"input_2","node_id":"-3984"}],"output_ports":[{"name":"data","node_id":"-3984"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-7618","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-7618"},{"name":"features","node_id":"-7618"}],"output_ports":[{"name":"data","node_id":"-7618"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-7623","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-7623"},{"name":"features","node_id":"-7623"}],"output_ports":[{"name":"data","node_id":"-7623"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-6044","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"1","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"5","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-6044"},{"name":"features","node_id":"-6044"}],"output_ports":[{"name":"data","node_id":"-6044"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-759","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"optimizers.Adam(lr=0.002)","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"10000","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"from tensorflow.keras.callbacks import EarlyStopping\n\nbigquant_run=EarlyStopping(monitor='val_mse', min_delta=0.0001, patience=5)","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = { \n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"1","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-759"},{"name":"training_data","node_id":"-759"},{"name":"validation_data","node_id":"-759"}],"output_ports":[{"name":"data","node_id":"-759"}],"cacheable":false,"seq_num":35,"comment":"","comment_collapsed":true},{"node_id":"-1452","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1452"}],"output_ports":[{"name":"data","node_id":"-1452"}],"cacheable":false,"seq_num":37,"comment":"","comment_collapsed":true},{"node_id":"-1557","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"64","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1557"}],"output_ports":[{"name":"data","node_id":"-1557"}],"cacheable":false,"seq_num":43,"comment":"","comment_collapsed":true},{"node_id":"-1632","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"128","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1632"}],"output_ports":[{"name":"data","node_id":"-1632"}],"cacheable":false,"seq_num":47,"comment":"","comment_collapsed":true},{"node_id":"-1664","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1664"}],"output_ports":[{"name":"data","node_id":"-1664"}],"cacheable":false,"seq_num":48,"comment":"","comment_collapsed":true},{"node_id":"-1700","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"128","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1700"}],"output_ports":[{"name":"data","node_id":"-1700"}],"cacheable":false,"seq_num":50,"comment":"","comment_collapsed":true},{"node_id":"-1732","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1732"}],"output_ports":[{"name":"data","node_id":"-1732"}],"cacheable":false,"seq_num":51,"comment":"","comment_collapsed":true},{"node_id":"-1768","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"128","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1768"}],"output_ports":[{"name":"data","node_id":"-1768"}],"cacheable":false,"seq_num":53,"comment":"","comment_collapsed":true},{"node_id":"-1818","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1818"}],"output_ports":[{"name":"data","node_id":"-1818"}],"cacheable":false,"seq_num":57,"comment":"","comment_collapsed":true},{"node_id":"-1919","module_id":"BigQuantSpace.dl_layer_add.dl_layer_add-v1","parameters":[{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input1","node_id":"-1919"},{"name":"input2","node_id":"-1919"},{"name":"input3","node_id":"-1919"}],"output_ports":[{"name":"data","node_id":"-1919"}],"cacheable":false,"seq_num":62,"comment":"","comment_collapsed":true},{"node_id":"-1910","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1910"}],"output_ports":[{"name":"data","node_id":"-1910"}],"cacheable":false,"seq_num":61,"comment":"","comment_collapsed":true},{"node_id":"-26538","module_id":"BigQuantSpace.dl_layer_maxpooling1d.dl_layer_maxpooling1d-v1","parameters":[{"name":"pool_size","value":"2","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-26538"}],"output_ports":[{"name":"data","node_id":"-26538"}],"cacheable":false,"seq_num":41,"comment":"","comment_collapsed":true},{"node_id":"-8291","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"64","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-8291"}],"output_ports":[{"name":"data","node_id":"-8291"}],"cacheable":false,"seq_num":44,"comment":"","comment_collapsed":true},{"node_id":"-8323","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"128","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-8323"}],"output_ports":[{"name":"data","node_id":"-8323"}],"cacheable":false,"seq_num":45,"comment":"","comment_collapsed":true},{"node_id":"-1301","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1301"}],"output_ports":[{"name":"data","node_id":"-1301"}],"cacheable":false,"seq_num":46,"comment":"","comment_collapsed":true},{"node_id":"-1330","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"128","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1330"}],"output_ports":[{"name":"data","node_id":"-1330"}],"cacheable":false,"seq_num":49,"comment":"","comment_collapsed":true},{"node_id":"-2388","module_id":"BigQuantSpace.dl_layer_globalmaxpooling1d.dl_layer_globalmaxpooling1d-v1","parameters":[{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-2388"}],"output_ports":[{"name":"data","node_id":"-2388"}],"cacheable":false,"seq_num":38,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='116,-155,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='-34,-17,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='560,-297,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='103,370,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='812,-61,200,200'/><node_position Node='-106' Position='290,-52,200,200'/><node_position Node='-113' Position='290,80,200,200'/><node_position Node='-122' Position='821,46,200,200'/><node_position Node='-129' Position='822,198,200,200'/><node_position Node='-141' Position='121,1132,200,200'/><node_position Node='-160' Position='-477,-460,200,200'/><node_position Node='-1540' Position='-134,924,200,200'/><node_position Node='-2431' Position='-1,1015,200,200'/><node_position Node='-773' Position='-33,55,200,200'/><node_position Node='-778' Position='820,277,200,200'/><node_position Node='-251' Position='820,411,200,200'/><node_position Node='-3880' Position='-423,741,200,200'/><node_position Node='-3895' Position='101,503,200,200'/><node_position Node='-3984' Position='291,167,200,200'/><node_position Node='-7618' Position='292,233,200,200'/><node_position Node='-7623' Position='820,343,200,200'/><node_position Node='-6044' Position='103,439,200,200'/><node_position Node='-759' Position='-276,836,200,200'/><node_position Node='-1452' Position='-637.6410217285156,-296.6410217285156,200,200'/><node_position Node='-1557' Position='-641,-219,200,200'/><node_position Node='-1632' Position='-642,93,200,200'/><node_position Node='-1664' Position='-959,203,200,200'/><node_position Node='-1700' Position='-960,272,200,200'/><node_position Node='-1732' Position='-960,346,200,200'/><node_position Node='-1768' Position='-957,418,200,200'/><node_position Node='-1818' Position='-635,565,200,200'/><node_position Node='-1919' Position='-636,323,200,200'/><node_position Node='-1910' Position='-637,484.3589782714844,200,200'/><node_position Node='-26538' Position='-642,-67,200,200'/><node_position Node='-8291' Position='-640,-140,200,200'/><node_position Node='-8323' Position='-643,9,200,200'/><node_position Node='-1301' Position='-956,497,200,200'/><node_position Node='-1330' Position='-952,568,200,200'/><node_position Node='-2388' Position='-637,398,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [10]:
    # 本代码由可视化策略环境自动生成 2021年11月30日 13:34
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m4_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        from sklearn.model_selection import train_test_split
        data = input_1.read()
        x_train, x_val, y_train, y_val = train_test_split(data["x"], data['y'], shuffle=False, test_size=0.2)
        data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})
        data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m4_post_run_bigquant_run(outputs):
        return outputs
    
    from tensorflow.keras.callbacks import EarlyStopping
    
    m35_earlystop_bigquant_run=EarlyStopping(monitor='val_mse', min_delta=0.0001, patience=5)
    # 用户的自定义层需要写到字典中,比如
    # {
    #   "MyLayer": MyLayer
    # }
    m35_custom_objects_bigquant_run = {    
        
    }
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m24_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        pred_label = input_1.read_pickle()
        df = input_2.read_df()
        df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
        df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
        return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m24_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0003, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 20
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.05
        context.options['hold_days'] = 5
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
            # print('rank order for sell %s' % instruments)
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        pass
    
    
    m1 = M.instruments.v2(
        start_date='2010-01-01',
        end_date='2017-12-31',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1) - 1
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=False
    )
    
    m13 = M.standardlize.v8(
        input_1=m2.data,
        columns_input='label'
    )
    
    m3 = M.input_features.v1(
        features="""close_0
    open_0
    high_0
    low_0 
    amount_0
    turn_0 
    return_0
    
    close_1
    open_1
    high_1
    low_1
    return_1
    amount_1
    turn_1
     
    close_2
    open_2
    high_2
    low_2
    amount_2
    turn_2
    return_2
     
    close_3
    open_3
    high_3
    low_3
    amount_3
    turn_3
    return_3
     
    close_4
    open_4
    high_4
    low_4
    amount_4
    turn_4
    return_4
     
    mean(close_0, 5)
    mean(low_0, 5)
    mean(open_0, 5)
    mean(high_0, 5)
    mean(turn_0, 5)
    mean(amount_0, 5)
    mean(return_0, 5)
     
    ts_max(close_0, 5)
    ts_max(low_0, 5)
    ts_max(open_0, 5)
    ts_max(high_0, 5)
    ts_max(turn_0, 5)
    ts_max(amount_0, 5)
    ts_max(return_0, 5)
     
    ts_min(close_0, 5)
    ts_min(low_0, 5)
    ts_min(open_0, 5)
    ts_min(high_0, 5)
    ts_min(turn_0, 5)
    ts_min(amount_0, 5)
    ts_min(return_0, 5) 
     
    std(close_0, 5)
    std(low_0, 5)
    std(open_0, 5)
    std(high_0, 5)
    std(turn_0, 5)
    std(amount_0, 5)
    std(return_0, 5)
     
    ts_rank(close_0, 5)
    ts_rank(low_0, 5)
    ts_rank(open_0, 5)
    ts_rank(high_0, 5)
    ts_rank(turn_0, 5)
    ts_rank(amount_0, 5)
    ts_rank(return_0, 5)
     
    decay_linear(close_0, 5)
    decay_linear(low_0, 5)
    decay_linear(open_0, 5)
    decay_linear(high_0, 5)
    decay_linear(turn_0, 5)
    decay_linear(amount_0, 5)
    decay_linear(return_0, 5)
     
    correlation(volume_0, return_0, 5)
    correlation(volume_0, high_0, 5)
    correlation(volume_0, low_0, 5)
    correlation(volume_0, close_0, 5)
    correlation(volume_0, open_0, 5)
    correlation(volume_0, turn_0, 5)
      
    correlation(return_0, high_0, 5)
    correlation(return_0, low_0, 5)
    correlation(return_0, close_0, 5)
    correlation(return_0, open_0, 5)
    correlation(return_0, turn_0, 5)
     
    correlation(high_0, low_0, 5)
    correlation(high_0, close_0, 5)
    correlation(high_0, open_0, 5)
    correlation(high_0, turn_0, 5)
     
    correlation(low_0, close_0, 5)
    correlation(low_0, open_0, 5)
    correlation(low_0, turn_0, 5)
     
    correlation(close_0, open_0, 5)
    correlation(close_0, turn_0, 5)
    correlation(open_0, turn_0, 5)"""
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=10
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False
    )
    
    m14 = M.standardlize.v8(
        input_1=m16.data,
        input_2=m3.data,
        columns_input=''
    )
    
    m21 = M.fillnan.v1(
        input_data=m14.data,
        features=m3.data,
        fill_value='0.0'
    )
    
    m7 = M.join.v3(
        data1=m13.data,
        data2=m21.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m26 = M.dl_convert_to_bin.v2(
        input_data=m7.data,
        features=m3.data,
        window_size=1,
        feature_clip=5,
        flatten=True,
        window_along_col='instrument'
    )
    
    m4 = M.cached.v3(
        input_1=m26.data,
        input_2=m3.data,
        run=m4_run_bigquant_run,
        post_run=m4_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m9 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2018-01-01'),
        end_date=T.live_run_param('trading_date', '2021-10-31'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m17 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=10
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m17.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False
    )
    
    m25 = M.standardlize.v8(
        input_1=m18.data,
        input_2=m3.data,
        columns_input=''
    )
    
    m22 = M.fillnan.v1(
        input_data=m25.data,
        features=m3.data,
        fill_value='0.0'
    )
    
    m27 = M.dl_convert_to_bin.v2(
        input_data=m22.data,
        features=m3.data,
        window_size=1,
        feature_clip=5,
        flatten=True,
        window_along_col='instrument'
    )
    
    m6 = M.dl_layer_input.v1(
        shape='98,1',
        batch_shape='',
        dtype='float32',
        sparse=False,
        name=''
    )
    
    m37 = M.dl_layer_batchnormalization.v1(
        inputs=m6.data,
        axis=-1,
        momentum=0.99,
        epsilon=0.001,
        center=True,
        scale=True,
        beta_initializer='Zeros',
        gamma_initializer='Ones',
        moving_mean_initializer='Zeros',
        moving_variance_initializer='Ones',
        beta_regularizer='None',
        beta_regularizer_l1=0,
        beta_regularizer_l2=0,
        gamma_regularizer='None',
        gamma_regularizer_l1=0,
        gamma_regularizer_l2=0,
        beta_constraint='None',
        gamma_constraint='None',
        name=''
    )
    
    m43 = M.dl_layer_conv1d.v1(
        inputs=m37.data,
        filters=64,
        kernel_size='3',
        strides='1',
        padding='same',
        dilation_rate=1,
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m44 = M.dl_layer_conv1d.v1(
        inputs=m43.data,
        filters=64,
        kernel_size='3',
        strides='1',
        padding='same',
        dilation_rate=1,
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m41 = M.dl_layer_maxpooling1d.v1(
        inputs=m44.data,
        pool_size=2,
        padding='valid',
        name=''
    )
    
    m45 = M.dl_layer_conv1d.v1(
        inputs=m41.data,
        filters=128,
        kernel_size='5',
        strides='1',
        padding='same',
        dilation_rate=1,
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m47 = M.dl_layer_conv1d.v1(
        inputs=m45.data,
        filters=128,
        kernel_size='5',
        strides='1',
        padding='same',
        dilation_rate=1,
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m48 = M.dl_layer_batchnormalization.v1(
        inputs=m47.data,
        axis=-1,
        momentum=0.99,
        epsilon=0.001,
        center=True,
        scale=True,
        beta_initializer='Zeros',
        gamma_initializer='Ones',
        moving_mean_initializer='Zeros',
        moving_variance_initializer='Ones',
        beta_regularizer='None',
        beta_regularizer_l1=0,
        beta_regularizer_l2=0,
        gamma_regularizer='None',
        gamma_regularizer_l1=0,
        gamma_regularizer_l2=0,
        beta_constraint='None',
        gamma_constraint='None',
        name=''
    )
    
    m50 = M.dl_layer_conv1d.v1(
        inputs=m48.data,
        filters=128,
        kernel_size='3',
        strides='1',
        padding='same',
        dilation_rate=1,
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m51 = M.dl_layer_batchnormalization.v1(
        inputs=m50.data,
        axis=-1,
        momentum=0.99,
        epsilon=0.001,
        center=True,
        scale=True,
        beta_initializer='Zeros',
        gamma_initializer='Ones',
        moving_mean_initializer='Zeros',
        moving_variance_initializer='Ones',
        beta_regularizer='None',
        beta_regularizer_l1=0,
        beta_regularizer_l2=0,
        gamma_regularizer='None',
        gamma_regularizer_l1=0,
        gamma_regularizer_l2=0,
        beta_constraint='None',
        gamma_constraint='None',
        name=''
    )
    
    m53 = M.dl_layer_conv1d.v1(
        inputs=m51.data,
        filters=128,
        kernel_size='5',
        strides='1',
        padding='same',
        dilation_rate=1,
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m46 = M.dl_layer_batchnormalization.v1(
        inputs=m53.data,
        axis=-1,
        momentum=0.99,
        epsilon=0.001,
        center=True,
        scale=True,
        beta_initializer='Zeros',
        gamma_initializer='Ones',
        moving_mean_initializer='Zeros',
        moving_variance_initializer='Ones',
        beta_regularizer='None',
        beta_regularizer_l1=0,
        beta_regularizer_l2=0,
        gamma_regularizer='None',
        gamma_regularizer_l1=0,
        gamma_regularizer_l2=0,
        beta_constraint='None',
        gamma_constraint='None',
        name=''
    )
    
    m49 = M.dl_layer_conv1d.v1(
        inputs=m46.data,
        filters=128,
        kernel_size='5',
        strides='1',
        padding='same',
        dilation_rate=1,
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m62 = M.dl_layer_add.v1(
        input1=m49.data,
        input2=m47.data,
        name=''
    )
    
    m38 = M.dl_layer_globalmaxpooling1d.v1(
        inputs=m62.data,
        name=''
    )
    
    m61 = M.dl_layer_dropout.v1(
        inputs=m38.data,
        rate=0.1,
        noise_shape='',
        name=''
    )
    
    m57 = M.dl_layer_dense.v1(
        inputs=m61.data,
        units=1,
        activation='linear',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m34 = M.dl_model_init.v1(
        inputs=m6.data,
        outputs=m57.data
    )
    
    m35 = M.dl_model_train.v1(
        input_model=m34.data,
        training_data=m4.data_1,
        validation_data=m4.data_2,
        optimizer='Adam',
        user_optimizer=optimizers.Adam(lr=0.002),
        loss='mean_squared_error',
        metrics='mse',
        batch_size=1024,
        epochs=10000,
        earlystop=m35_earlystop_bigquant_run,
        custom_objects=m35_custom_objects_bigquant_run,
        n_gpus=1,
        verbose='2:每个epoch输出一行记录',
        m_cached=False
    )
    
    m11 = M.dl_model_predict.v1(
        trained_model=m35.data,
        input_data=m27.data,
        batch_size=1024,
        n_gpus=1,
        verbose='2:每个epoch输出一行记录'
    )
    
    m24 = M.cached.v3(
        input_1=m11.data,
        input_2=m18.data,
        run=m24_run_bigquant_run,
        post_run=m24_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m19 = M.trade.v4(
        instruments=m9.data,
        options_data=m24.data_1,
        start_date='',
        end_date='',
        initialize=m19_initialize_bigquant_run,
        handle_data=m19_handle_data_bigquant_run,
        prepare=m19_prepare_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='后复权',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.SHA'
    )
    
    Epoch 1/10000
    3556/3556 - 158s - loss: 1.0345 - mse: 1.0345 - val_loss: 0.9790 - val_mse: 0.9790
    Epoch 2/10000
    3556/3556 - 150s - loss: 0.9921 - mse: 0.9921 - val_loss: 0.9780 - val_mse: 0.9780
    Epoch 3/10000
    3556/3556 - 150s - loss: 0.9901 - mse: 0.9901 - val_loss: 0.9779 - val_mse: 0.9779
    Epoch 4/10000
    3556/3556 - 151s - loss: 0.9889 - mse: 0.9889 - val_loss: 0.9778 - val_mse: 0.9778
    Epoch 5/10000
    3556/3556 - 151s - loss: 0.9875 - mse: 0.9875 - val_loss: 0.9761 - val_mse: 0.9761
    Epoch 6/10000
    3556/3556 - 150s - loss: 0.9866 - mse: 0.9866 - val_loss: 0.9775 - val_mse: 0.9775
    Epoch 7/10000
    3556/3556 - 151s - loss: 0.9856 - mse: 0.9856 - val_loss: 0.9778 - val_mse: 0.9778
    Epoch 8/10000
    3556/3556 - 151s - loss: 0.9847 - mse: 0.9847 - val_loss: 0.9779 - val_mse: 0.9779
    Epoch 9/10000
    3556/3556 - 152s - loss: 0.9838 - mse: 0.9838 - val_loss: 0.9775 - val_mse: 0.9775
    Epoch 10/10000
    3556/3556 - 151s - loss: 0.9829 - mse: 0.9829 - val_loss: 0.9781 - val_mse: 0.9781
    
    3419/3419 - 37s
    DataSource(7a880d84a4ec40d3adaa512ad03fa013T)
    
    • 收益率92.44%
    • 年化收益率19.45%
    • 基准收益率21.78%
    • 阿尔法0.16
    • 贝塔0.91
    • 夏普比率0.65
    • 胜率0.52
    • 盈亏比1.04
    • 收益波动率29.68%
    • 信息比率0.04
    • 最大回撤25.24%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-07c82f19b2124bcebef7ba46dabe1118"}/bigcharts-data-end
    In [ ]:
     
    
    In [ ]:
     
    
    In [ ]:
     
    
    In [ ]:
     
    
    In [ ]: