{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-773:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-778:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3895:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3984:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-7618:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-7623:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-6044:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-6044:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-141:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-3984:input_1","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-2431:input_2","from_node_id":"-129:data"},{"to_node_id":"-778:input_1","from_node_id":"-129:data"},{"to_node_id":"-3880:inputs","from_node_id":"-160:data"},{"to_node_id":"-1452:inputs","from_node_id":"-160:data"},{"to_node_id":"-2431:input_1","from_node_id":"-1540:data"},{"to_node_id":"-141:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-773:data"},{"to_node_id":"-7623:input_data","from_node_id":"-778:data"},{"to_node_id":"-1540:input_data","from_node_id":"-251:data"},{"to_node_id":"-759:input_model","from_node_id":"-3880:data"},{"to_node_id":"-759:training_data","from_node_id":"-3895:data_1"},{"to_node_id":"-759:validation_data","from_node_id":"-3895:data_2"},{"to_node_id":"-7618:input_data","from_node_id":"-3984:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-7618:data"},{"to_node_id":"-251:input_data","from_node_id":"-7623:data"},{"to_node_id":"-3895:input_1","from_node_id":"-6044:data"},{"to_node_id":"-1540:trained_model","from_node_id":"-759:data"},{"to_node_id":"-1557:inputs","from_node_id":"-1452:data"},{"to_node_id":"-8291:inputs","from_node_id":"-1557:data"},{"to_node_id":"-1664:inputs","from_node_id":"-1632:data"},{"to_node_id":"-1919:input2","from_node_id":"-1632:data"},{"to_node_id":"-1700:inputs","from_node_id":"-1664:data"},{"to_node_id":"-1732:inputs","from_node_id":"-1700:data"},{"to_node_id":"-1768:inputs","from_node_id":"-1732:data"},{"to_node_id":"-1301:inputs","from_node_id":"-1768:data"},{"to_node_id":"-3880:outputs","from_node_id":"-1818:data"},{"to_node_id":"-2388:inputs","from_node_id":"-1919:data"},{"to_node_id":"-1818:inputs","from_node_id":"-1910:data"},{"to_node_id":"-8323:inputs","from_node_id":"-26538:data"},{"to_node_id":"-26538:inputs","from_node_id":"-8291:data"},{"to_node_id":"-1632:inputs","from_node_id":"-8323:data"},{"to_node_id":"-1330:inputs","from_node_id":"-1301:data"},{"to_node_id":"-1919:input1","from_node_id":"-1330:data"},{"to_node_id":"-1910:inputs","from_node_id":"-2388:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1) - 1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0\nopen_0\nhigh_0\nlow_0 \namount_0\nturn_0 \nreturn_0\n\nclose_1\nopen_1\nhigh_1\nlow_1\nreturn_1\namount_1\nturn_1\n \nclose_2\nopen_2\nhigh_2\nlow_2\namount_2\nturn_2\nreturn_2\n \nclose_3\nopen_3\nhigh_3\nlow_3\namount_3\nturn_3\nreturn_3\n \nclose_4\nopen_4\nhigh_4\nlow_4\namount_4\nturn_4\nreturn_4\n \nmean(close_0, 5)\nmean(low_0, 5)\nmean(open_0, 5)\nmean(high_0, 5)\nmean(turn_0, 5)\nmean(amount_0, 5)\nmean(return_0, 5)\n \nts_max(close_0, 5)\nts_max(low_0, 5)\nts_max(open_0, 5)\nts_max(high_0, 5)\nts_max(turn_0, 5)\nts_max(amount_0, 5)\nts_max(return_0, 5)\n \nts_min(close_0, 5)\nts_min(low_0, 5)\nts_min(open_0, 5)\nts_min(high_0, 5)\nts_min(turn_0, 5)\nts_min(amount_0, 5)\nts_min(return_0, 5) \n \nstd(close_0, 5)\nstd(low_0, 5)\nstd(open_0, 5)\nstd(high_0, 5)\nstd(turn_0, 5)\nstd(amount_0, 5)\nstd(return_0, 5)\n \nts_rank(close_0, 5)\nts_rank(low_0, 5)\nts_rank(open_0, 5)\nts_rank(high_0, 5)\nts_rank(turn_0, 5)\nts_rank(amount_0, 5)\nts_rank(return_0, 5)\n \ndecay_linear(close_0, 5)\ndecay_linear(low_0, 5)\ndecay_linear(open_0, 5)\ndecay_linear(high_0, 5)\ndecay_linear(turn_0, 5)\ndecay_linear(amount_0, 5)\ndecay_linear(return_0, 5)\n \ncorrelation(volume_0, return_0, 5)\ncorrelation(volume_0, high_0, 5)\ncorrelation(volume_0, low_0, 5)\ncorrelation(volume_0, close_0, 5)\ncorrelation(volume_0, open_0, 5)\ncorrelation(volume_0, turn_0, 5)\n \ncorrelation(return_0, high_0, 5)\ncorrelation(return_0, low_0, 5)\ncorrelation(return_0, close_0, 5)\ncorrelation(return_0, open_0, 5)\ncorrelation(return_0, turn_0, 5)\n \ncorrelation(high_0, low_0, 5)\ncorrelation(high_0, close_0, 5)\ncorrelation(high_0, open_0, 5)\ncorrelation(high_0, turn_0, 5)\n \ncorrelation(low_0, close_0, 5)\ncorrelation(low_0, open_0, 5)\ncorrelation(low_0, turn_0, 5)\n \ncorrelation(close_0, open_0, 5)\ncorrelation(close_0, turn_0, 5)\ncorrelation(open_0, turn_0, 5)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-10-08","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0003, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 2\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0.025","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"98,1","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-1540","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"512","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"1","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-1540"},{"name":"input_data","node_id":"-1540"}],"output_ports":[{"name":"data","node_id":"-1540"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-773","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-773"},{"name":"input_2","node_id":"-773"}],"output_ports":[{"name":"data","node_id":"-773"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-778","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-778"},{"name":"input_2","node_id":"-778"}],"output_ports":[{"name":"data","node_id":"-778"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"1","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-3880","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-3880"},{"name":"outputs","node_id":"-3880"}],"output_ports":[{"name":"data","node_id":"-3880"}],"cacheable":false,"seq_num":34,"comment":"","comment_collapsed":true},{"node_id":"-3895","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n data = input_1.read()\n x_train, x_val, y_train, y_val = train_test_split(data[\"x\"], data['y'], shuffle=False, test_size=0.2)\n data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})\n data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3895"},{"name":"input_2","node_id":"-3895"},{"name":"input_3","node_id":"-3895"}],"output_ports":[{"name":"data_1","node_id":"-3895"},{"name":"data_2","node_id":"-3895"},{"name":"data_3","node_id":"-3895"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-3984","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3984"},{"name":"input_2","node_id":"-3984"}],"output_ports":[{"name":"data","node_id":"-3984"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-7618","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-7618"},{"name":"features","node_id":"-7618"}],"output_ports":[{"name":"data","node_id":"-7618"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-7623","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-7623"},{"name":"features","node_id":"-7623"}],"output_ports":[{"name":"data","node_id":"-7623"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-6044","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"1","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-6044"},{"name":"features","node_id":"-6044"}],"output_ports":[{"name":"data","node_id":"-6044"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-759","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"optimizers.Adam(lr=0.002)","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"512","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"10000","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"from tensorflow.keras.callbacks import EarlyStopping\n\nbigquant_run=EarlyStopping(monitor='val_mse', min_delta=0.0001, patience=5)","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = { \n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"1","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-759"},{"name":"training_data","node_id":"-759"},{"name":"validation_data","node_id":"-759"}],"output_ports":[{"name":"data","node_id":"-759"}],"cacheable":false,"seq_num":35,"comment":"","comment_collapsed":true},{"node_id":"-1452","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1452"}],"output_ports":[{"name":"data","node_id":"-1452"}],"cacheable":false,"seq_num":37,"comment":"","comment_collapsed":true},{"node_id":"-1557","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"128","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1557"}],"output_ports":[{"name":"data","node_id":"-1557"}],"cacheable":false,"seq_num":43,"comment":"","comment_collapsed":true},{"node_id":"-1632","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"256","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1632"}],"output_ports":[{"name":"data","node_id":"-1632"}],"cacheable":false,"seq_num":47,"comment":"","comment_collapsed":true},{"node_id":"-1664","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1664"}],"output_ports":[{"name":"data","node_id":"-1664"}],"cacheable":false,"seq_num":48,"comment":"","comment_collapsed":true},{"node_id":"-1700","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"256","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1700"}],"output_ports":[{"name":"data","node_id":"-1700"}],"cacheable":false,"seq_num":50,"comment":"","comment_collapsed":true},{"node_id":"-1732","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1732"}],"output_ports":[{"name":"data","node_id":"-1732"}],"cacheable":false,"seq_num":51,"comment":"","comment_collapsed":true},{"node_id":"-1768","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"256","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1768"}],"output_ports":[{"name":"data","node_id":"-1768"}],"cacheable":false,"seq_num":53,"comment":"","comment_collapsed":true},{"node_id":"-1818","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1818"}],"output_ports":[{"name":"data","node_id":"-1818"}],"cacheable":false,"seq_num":57,"comment":"","comment_collapsed":true},{"node_id":"-1919","module_id":"BigQuantSpace.dl_layer_add.dl_layer_add-v1","parameters":[{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input1","node_id":"-1919"},{"name":"input2","node_id":"-1919"},{"name":"input3","node_id":"-1919"}],"output_ports":[{"name":"data","node_id":"-1919"}],"cacheable":false,"seq_num":62,"comment":"","comment_collapsed":true},{"node_id":"-1910","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1910"}],"output_ports":[{"name":"data","node_id":"-1910"}],"cacheable":false,"seq_num":61,"comment":"","comment_collapsed":true},{"node_id":"-26538","module_id":"BigQuantSpace.dl_layer_maxpooling1d.dl_layer_maxpooling1d-v1","parameters":[{"name":"pool_size","value":"2","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-26538"}],"output_ports":[{"name":"data","node_id":"-26538"}],"cacheable":false,"seq_num":41,"comment":"","comment_collapsed":true},{"node_id":"-8291","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"128","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-8291"}],"output_ports":[{"name":"data","node_id":"-8291"}],"cacheable":false,"seq_num":44,"comment":"","comment_collapsed":true},{"node_id":"-8323","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"256","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-8323"}],"output_ports":[{"name":"data","node_id":"-8323"}],"cacheable":false,"seq_num":45,"comment":"","comment_collapsed":true},{"node_id":"-1301","module_id":"BigQuantSpace.dl_layer_batchnormalization.dl_layer_batchnormalization-v1","parameters":[{"name":"axis","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"momentum","value":0.99,"type":"Literal","bound_global_parameter":null},{"name":"epsilon","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"center","value":"True","type":"Literal","bound_global_parameter":null},{"name":"scale","value":"True","type":"Literal","bound_global_parameter":null},{"name":"beta_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_beta_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_mean_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_moving_mean_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"moving_variance_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_moving_variance_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"beta_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_beta_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"gamma_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_gamma_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"beta_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_beta_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"gamma_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_gamma_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1301"}],"output_ports":[{"name":"data","node_id":"-1301"}],"cacheable":false,"seq_num":46,"comment":"","comment_collapsed":true},{"node_id":"-1330","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"256","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"same","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-1330"}],"output_ports":[{"name":"data","node_id":"-1330"}],"cacheable":false,"seq_num":49,"comment":"","comment_collapsed":true},{"node_id":"-2388","module_id":"BigQuantSpace.dl_layer_globalmaxpooling1d.dl_layer_globalmaxpooling1d-v1","parameters":[{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-2388"}],"output_ports":[{"name":"data","node_id":"-2388"}],"cacheable":false,"seq_num":38,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='117,-157,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='-34,-17,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='562,-297,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='105,300,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='815,-64,200,200'/><node_position Node='-106' Position='290,-16,200,200'/><node_position Node='-113' Position='291,85,200,200'/><node_position Node='-122' Position='821,46,200,200'/><node_position Node='-129' Position='819,109,200,200'/><node_position Node='-141' Position='151,1066,200,200'/><node_position Node='-160' Position='-295,-427,200,200'/><node_position Node='-1540' Position='-95,867,200,200'/><node_position Node='-2431' Position='37,958,200,200'/><node_position Node='-773' Position='-33,55,200,200'/><node_position Node='-778' Position='817,176,200,200'/><node_position Node='-251' Position='817,310,200,200'/><node_position Node='-3880' Position='-387,684,200,200'/><node_position Node='-3895' Position='103,433,200,200'/><node_position Node='-3984' Position='288,155,200,200'/><node_position Node='-7618' Position='286,217,200,200'/><node_position Node='-7623' Position='817,242,200,200'/><node_position Node='-6044' Position='105,369,200,200'/><node_position Node='-759' Position='-232,776,200,200'/><node_position Node='-1452' Position='-640,-299,200,200'/><node_position Node='-1557' Position='-641,-219,200,200'/><node_position Node='-1632' Position='-644,92,200,200'/><node_position Node='-1664' Position='-959,203,200,200'/><node_position Node='-1700' Position='-960,272,200,200'/><node_position Node='-1732' Position='-960,346,200,200'/><node_position Node='-1768' Position='-957,418,200,200'/><node_position Node='-1818' Position='-635,565,200,200'/><node_position Node='-1919' Position='-636,323,200,200'/><node_position Node='-1910' Position='-637,482,200,200'/><node_position Node='-26538' Position='-642,-67,200,200'/><node_position Node='-8291' Position='-640,-140,200,200'/><node_position Node='-8323' Position='-643,9,200,200'/><node_position Node='-1301' Position='-956,497,200,200'/><node_position Node='-1330' Position='-953,569,200,200'/><node_position Node='-2388' Position='-637,398,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-10-12 14:16:12.990919] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-10-12 14:16:13.016114] INFO: moduleinvoker: 命中缓存
[2021-10-12 14:16:13.018018] INFO: moduleinvoker: instruments.v2 运行完成[0.027128s].
[2021-10-12 14:16:13.028602] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-10-12 14:16:18.507751] INFO: 自动标注(股票): 加载历史数据: 2647809 行
[2021-10-12 14:16:18.510844] INFO: 自动标注(股票): 开始标注 ..
[2021-10-12 14:16:27.895098] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[14.866487s].
[2021-10-12 14:16:27.906343] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-10-12 14:16:57.233437] INFO: moduleinvoker: standardlize.v8 运行完成[29.327093s].
[2021-10-12 14:16:57.242947] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-10-12 14:16:57.252266] INFO: moduleinvoker: 命中缓存
[2021-10-12 14:16:57.254066] INFO: moduleinvoker: input_features.v1 运行完成[0.011137s].
[2021-10-12 14:16:57.274088] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-10-12 14:17:00.594399] INFO: 基础特征抽取: 年份 2017, 特征行数=19477
[2021-10-12 14:17:06.781327] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2021-10-12 14:17:13.633031] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2021-10-12 14:17:20.900843] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2021-10-12 14:17:21.095485] INFO: 基础特征抽取: 总行数: 2667292
[2021-10-12 14:17:21.193887] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[23.919794s].
[2021-10-12 14:17:21.208058] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-10-12 14:17:38.539768] INFO: derived_feature_extractor: 提取完成 mean(close_0, 5), 2.491s
[2021-10-12 14:17:40.850648] INFO: derived_feature_extractor: 提取完成 mean(low_0, 5), 2.308s
[2021-10-12 14:17:43.145670] INFO: derived_feature_extractor: 提取完成 mean(open_0, 5), 2.293s
[2021-10-12 14:17:45.462251] INFO: derived_feature_extractor: 提取完成 mean(high_0, 5), 2.314s
[2021-10-12 14:17:47.786525] INFO: derived_feature_extractor: 提取完成 mean(turn_0, 5), 2.323s
[2021-10-12 14:17:50.283908] INFO: derived_feature_extractor: 提取完成 mean(amount_0, 5), 2.495s
[2021-10-12 14:17:52.679980] INFO: derived_feature_extractor: 提取完成 mean(return_0, 5), 2.394s
[2021-10-12 14:17:55.263442] INFO: derived_feature_extractor: 提取完成 ts_max(close_0, 5), 2.581s
[2021-10-12 14:17:57.688087] INFO: derived_feature_extractor: 提取完成 ts_max(low_0, 5), 2.423s
[2021-10-12 14:18:00.181837] INFO: derived_feature_extractor: 提取完成 ts_max(open_0, 5), 2.490s
[2021-10-12 14:18:02.668848] INFO: derived_feature_extractor: 提取完成 ts_max(high_0, 5), 2.484s
[2021-10-12 14:18:05.038820] INFO: derived_feature_extractor: 提取完成 ts_max(turn_0, 5), 2.367s
[2021-10-12 14:18:07.499026] INFO: derived_feature_extractor: 提取完成 ts_max(amount_0, 5), 2.458s
[2021-10-12 14:18:09.929156] INFO: derived_feature_extractor: 提取完成 ts_max(return_0, 5), 2.428s
[2021-10-12 14:18:12.582335] INFO: derived_feature_extractor: 提取完成 ts_min(close_0, 5), 2.650s
[2021-10-12 14:18:14.951910] INFO: derived_feature_extractor: 提取完成 ts_min(low_0, 5), 2.367s
[2021-10-12 14:18:17.371698] INFO: derived_feature_extractor: 提取完成 ts_min(open_0, 5), 2.418s
[2021-10-12 14:18:19.645019] INFO: derived_feature_extractor: 提取完成 ts_min(high_0, 5), 2.271s
[2021-10-12 14:18:22.035940] INFO: derived_feature_extractor: 提取完成 ts_min(turn_0, 5), 2.389s
[2021-10-12 14:18:24.423476] INFO: derived_feature_extractor: 提取完成 ts_min(amount_0, 5), 2.385s
[2021-10-12 14:18:26.822319] INFO: derived_feature_extractor: 提取完成 ts_min(return_0, 5), 2.397s
[2021-10-12 14:18:29.306489] INFO: derived_feature_extractor: 提取完成 std(close_0, 5), 2.482s
[2021-10-12 14:18:31.825024] INFO: derived_feature_extractor: 提取完成 std(low_0, 5), 2.516s
[2021-10-12 14:18:34.347484] INFO: derived_feature_extractor: 提取完成 std(open_0, 5), 2.520s
[2021-10-12 14:18:36.729408] INFO: derived_feature_extractor: 提取完成 std(high_0, 5), 2.380s
[2021-10-12 14:18:39.064897] INFO: derived_feature_extractor: 提取完成 std(turn_0, 5), 2.333s
[2021-10-12 14:18:41.506870] INFO: derived_feature_extractor: 提取完成 std(amount_0, 5), 2.440s
[2021-10-12 14:18:44.135487] INFO: derived_feature_extractor: 提取完成 std(return_0, 5), 2.626s
[2021-10-12 14:18:55.632665] INFO: derived_feature_extractor: 提取完成 ts_rank(close_0, 5), 11.494s
[2021-10-12 14:19:07.323679] INFO: derived_feature_extractor: 提取完成 ts_rank(low_0, 5), 11.689s
[2021-10-12 14:19:18.427169] INFO: derived_feature_extractor: 提取完成 ts_rank(open_0, 5), 11.101s
[2021-10-12 14:19:29.424899] INFO: derived_feature_extractor: 提取完成 ts_rank(high_0, 5), 10.995s
[2021-10-12 14:19:40.651409] INFO: derived_feature_extractor: 提取完成 ts_rank(turn_0, 5), 11.224s
[2021-10-12 14:19:51.554096] INFO: derived_feature_extractor: 提取完成 ts_rank(amount_0, 5), 10.901s
[2021-10-12 14:20:02.961522] INFO: derived_feature_extractor: 提取完成 ts_rank(return_0, 5), 11.406s
[2021-10-12 14:20:10.209429] INFO: derived_feature_extractor: 提取完成 decay_linear(close_0, 5), 7.246s
[2021-10-12 14:20:17.351266] INFO: derived_feature_extractor: 提取完成 decay_linear(low_0, 5), 7.139s
[2021-10-12 14:20:24.819808] INFO: derived_feature_extractor: 提取完成 decay_linear(open_0, 5), 7.466s
[2021-10-12 14:20:32.380983] INFO: derived_feature_extractor: 提取完成 decay_linear(high_0, 5), 7.559s
[2021-10-12 14:20:39.210979] INFO: derived_feature_extractor: 提取完成 decay_linear(turn_0, 5), 6.827s
[2021-10-12 14:20:46.454819] INFO: derived_feature_extractor: 提取完成 decay_linear(amount_0, 5), 7.241s
[2021-10-12 14:20:53.367849] INFO: derived_feature_extractor: 提取完成 decay_linear(return_0, 5), 6.911s
[2021-10-12 14:21:30.650867] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, return_0, 5), 37.281s
[2021-10-12 14:22:07.245767] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, high_0, 5), 36.592s
[2021-10-12 14:22:37.716750] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, low_0, 5), 30.469s
[2021-10-12 14:23:07.879367] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, close_0, 5), 30.159s
[2021-10-12 14:23:38.698960] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, open_0, 5), 30.815s
[2021-10-12 14:24:08.898795] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, turn_0, 5), 30.197s
[2021-10-12 14:24:39.769990] INFO: derived_feature_extractor: 提取完成 correlation(return_0, high_0, 5), 30.869s
[2021-10-12 14:25:08.718177] INFO: derived_feature_extractor: 提取完成 correlation(return_0, low_0, 5), 28.944s
[2021-10-12 14:25:37.040360] INFO: derived_feature_extractor: 提取完成 correlation(return_0, close_0, 5), 28.321s
[2021-10-12 14:26:07.641443] INFO: derived_feature_extractor: 提取完成 correlation(return_0, open_0, 5), 30.599s
[2021-10-12 14:26:38.607277] INFO: derived_feature_extractor: 提取完成 correlation(return_0, turn_0, 5), 30.964s
[2021-10-12 14:27:09.739027] INFO: derived_feature_extractor: 提取完成 correlation(high_0, low_0, 5), 31.130s
[2021-10-12 14:27:40.852556] INFO: derived_feature_extractor: 提取完成 correlation(high_0, close_0, 5), 31.112s
[2021-10-12 14:28:10.542105] INFO: derived_feature_extractor: 提取完成 correlation(high_0, open_0, 5), 29.688s
[2021-10-12 14:28:41.069304] INFO: derived_feature_extractor: 提取完成 correlation(high_0, turn_0, 5), 30.526s
[2021-10-12 14:29:11.303899] INFO: derived_feature_extractor: 提取完成 correlation(low_0, close_0, 5), 30.232s
[2021-10-12 14:29:43.174912] INFO: derived_feature_extractor: 提取完成 correlation(low_0, open_0, 5), 31.868s
[2021-10-12 14:30:14.428031] INFO: derived_feature_extractor: 提取完成 correlation(low_0, turn_0, 5), 31.251s
[2021-10-12 14:30:49.374769] INFO: derived_feature_extractor: 提取完成 correlation(close_0, open_0, 5), 34.945s
[2021-10-12 14:31:26.152037] INFO: derived_feature_extractor: 提取完成 correlation(close_0, turn_0, 5), 36.775s
[2021-10-12 14:32:03.110391] INFO: derived_feature_extractor: 提取完成 correlation(open_0, turn_0, 5), 36.956s
[2021-10-12 14:32:05.531719] INFO: derived_feature_extractor: /y_2017, 19477
[2021-10-12 14:32:09.917691] INFO: derived_feature_extractor: /y_2018, 816987
[2021-10-12 14:32:20.476197] INFO: derived_feature_extractor: /y_2019, 884867
[2021-10-12 14:32:31.871800] INFO: derived_feature_extractor: /y_2020, 945961
[2021-10-12 14:32:38.941067] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[917.733017s].
[2021-10-12 14:32:38.950408] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-10-12 14:38:28.856833] INFO: moduleinvoker: standardlize.v8 运行完成[349.906339s].
[2021-10-12 14:38:28.876687] INFO: moduleinvoker: fillnan.v1 开始运行..
[2021-10-12 14:38:55.662071] INFO: moduleinvoker: fillnan.v1 运行完成[26.785392s].
[2021-10-12 14:38:55.677008] INFO: moduleinvoker: join.v3 开始运行..
[2021-10-12 14:39:49.379395] INFO: join: /data, 行数=2623538/2649327, 耗时=42.181922s
[2021-10-12 14:39:49.547525] INFO: join: 最终行数: 2623538
[2021-10-12 14:39:49.643546] INFO: moduleinvoker: join.v3 运行完成[53.966544s].
[2021-10-12 14:39:49.666968] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-10-12 14:40:10.786459] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[21.119486s].
[2021-10-12 14:40:10.812028] INFO: moduleinvoker: cached.v3 开始运行..
[2021-10-12 14:40:18.427001] INFO: moduleinvoker: cached.v3 运行完成[7.614976s].
[2021-10-12 14:40:18.435523] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-10-12 14:40:18.444162] INFO: moduleinvoker: 命中缓存
[2021-10-12 14:40:18.447135] INFO: moduleinvoker: instruments.v2 运行完成[0.011614s].
[2021-10-12 14:40:18.464627] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-10-12 14:40:22.323364] INFO: 基础特征抽取: 年份 2020, 特征行数=32852
[2021-10-12 14:40:28.359000] INFO: 基础特征抽取: 年份 2021, 特征行数=786470
[2021-10-12 14:40:28.470474] INFO: 基础特征抽取: 总行数: 819322
[2021-10-12 14:40:28.540331] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[10.07574s].
[2021-10-12 14:40:28.553489] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-10-12 14:40:34.008081] INFO: derived_feature_extractor: 提取完成 mean(close_0, 5), 1.077s
[2021-10-12 14:40:35.007269] INFO: derived_feature_extractor: 提取完成 mean(low_0, 5), 0.995s
[2021-10-12 14:40:36.002583] INFO: derived_feature_extractor: 提取完成 mean(open_0, 5), 0.992s
[2021-10-12 14:40:36.979519] INFO: derived_feature_extractor: 提取完成 mean(high_0, 5), 0.975s
[2021-10-12 14:40:38.017278] INFO: derived_feature_extractor: 提取完成 mean(turn_0, 5), 1.035s
[2021-10-12 14:40:39.062215] INFO: derived_feature_extractor: 提取完成 mean(amount_0, 5), 1.043s
[2021-10-12 14:40:40.123547] INFO: derived_feature_extractor: 提取完成 mean(return_0, 5), 1.059s
[2021-10-12 14:40:41.123200] INFO: derived_feature_extractor: 提取完成 ts_max(close_0, 5), 0.997s
[2021-10-12 14:40:42.142524] INFO: derived_feature_extractor: 提取完成 ts_max(low_0, 5), 1.017s
[2021-10-12 14:40:43.219847] INFO: derived_feature_extractor: 提取完成 ts_max(open_0, 5), 1.075s
[2021-10-12 14:40:44.301676] INFO: derived_feature_extractor: 提取完成 ts_max(high_0, 5), 1.079s
[2021-10-12 14:40:45.350532] INFO: derived_feature_extractor: 提取完成 ts_max(turn_0, 5), 1.046s
[2021-10-12 14:40:46.353741] INFO: derived_feature_extractor: 提取完成 ts_max(amount_0, 5), 1.000s
[2021-10-12 14:40:47.357197] INFO: derived_feature_extractor: 提取完成 ts_max(return_0, 5), 1.001s
[2021-10-12 14:40:48.407412] INFO: derived_feature_extractor: 提取完成 ts_min(close_0, 5), 1.047s
[2021-10-12 14:40:49.436089] INFO: derived_feature_extractor: 提取完成 ts_min(low_0, 5), 1.027s
[2021-10-12 14:40:50.433853] INFO: derived_feature_extractor: 提取完成 ts_min(open_0, 5), 0.996s
[2021-10-12 14:40:51.463781] INFO: derived_feature_extractor: 提取完成 ts_min(high_0, 5), 1.028s
[2021-10-12 14:40:52.475808] INFO: derived_feature_extractor: 提取完成 ts_min(turn_0, 5), 1.010s
[2021-10-12 14:40:53.564446] INFO: derived_feature_extractor: 提取完成 ts_min(amount_0, 5), 1.086s
[2021-10-12 14:40:54.555544] INFO: derived_feature_extractor: 提取完成 ts_min(return_0, 5), 0.989s
[2021-10-12 14:40:55.590255] INFO: derived_feature_extractor: 提取完成 std(close_0, 5), 1.033s
[2021-10-12 14:40:56.667783] INFO: derived_feature_extractor: 提取完成 std(low_0, 5), 1.074s
[2021-10-12 14:40:57.664756] INFO: derived_feature_extractor: 提取完成 std(open_0, 5), 0.995s
[2021-10-12 14:40:58.692898] INFO: derived_feature_extractor: 提取完成 std(high_0, 5), 1.026s
[2021-10-12 14:40:59.692323] INFO: derived_feature_extractor: 提取完成 std(turn_0, 5), 0.997s
[2021-10-12 14:41:00.697844] INFO: derived_feature_extractor: 提取完成 std(amount_0, 5), 1.003s
[2021-10-12 14:41:01.727010] INFO: derived_feature_extractor: 提取完成 std(return_0, 5), 1.027s
[2021-10-12 14:41:05.309611] INFO: derived_feature_extractor: 提取完成 ts_rank(close_0, 5), 3.580s
[2021-10-12 14:41:08.787597] INFO: derived_feature_extractor: 提取完成 ts_rank(low_0, 5), 3.476s
[2021-10-12 14:41:12.337357] INFO: derived_feature_extractor: 提取完成 ts_rank(open_0, 5), 3.548s
[2021-10-12 14:41:15.934908] INFO: derived_feature_extractor: 提取完成 ts_rank(high_0, 5), 3.595s
[2021-10-12 14:41:19.521613] INFO: derived_feature_extractor: 提取完成 ts_rank(turn_0, 5), 3.584s
[2021-10-12 14:41:23.119149] INFO: derived_feature_extractor: 提取完成 ts_rank(amount_0, 5), 3.596s
[2021-10-12 14:41:26.823435] INFO: derived_feature_extractor: 提取完成 ts_rank(return_0, 5), 3.703s
[2021-10-12 14:41:29.319866] INFO: derived_feature_extractor: 提取完成 decay_linear(close_0, 5), 2.495s
[2021-10-12 14:41:31.779866] INFO: derived_feature_extractor: 提取完成 decay_linear(low_0, 5), 2.458s
[2021-10-12 14:41:34.204644] INFO: derived_feature_extractor: 提取完成 decay_linear(open_0, 5), 2.422s
[2021-10-12 14:41:36.637214] INFO: derived_feature_extractor: 提取完成 decay_linear(high_0, 5), 2.430s
[2021-10-12 14:41:39.091091] INFO: derived_feature_extractor: 提取完成 decay_linear(turn_0, 5), 2.451s
[2021-10-12 14:41:41.788836] INFO: derived_feature_extractor: 提取完成 decay_linear(amount_0, 5), 2.695s
[2021-10-12 14:41:44.278394] INFO: derived_feature_extractor: 提取完成 decay_linear(return_0, 5), 2.487s
[2021-10-12 14:42:23.635952] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, return_0, 5), 39.355s
[2021-10-12 14:42:57.010430] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, high_0, 5), 33.373s
[2021-10-12 14:43:33.219952] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, low_0, 5), 36.208s
[2021-10-12 14:44:09.248375] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, close_0, 5), 36.026s
[2021-10-12 14:44:44.719369] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, open_0, 5), 35.469s
[2021-10-12 14:45:20.358758] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, turn_0, 5), 35.637s
[2021-10-12 14:45:57.490493] INFO: derived_feature_extractor: 提取完成 correlation(return_0, high_0, 5), 37.130s
[2021-10-12 14:46:32.668684] INFO: derived_feature_extractor: 提取完成 correlation(return_0, low_0, 5), 35.176s
[2021-10-12 14:47:09.475387] INFO: derived_feature_extractor: 提取完成 correlation(return_0, close_0, 5), 36.804s
[2021-10-12 14:47:40.162695] INFO: derived_feature_extractor: 提取完成 correlation(return_0, open_0, 5), 30.685s
[2021-10-12 14:48:18.009112] INFO: derived_feature_extractor: 提取完成 correlation(return_0, turn_0, 5), 37.844s
[2021-10-12 14:48:57.399124] INFO: derived_feature_extractor: 提取完成 correlation(high_0, low_0, 5), 39.388s
[2021-10-12 14:49:38.554454] INFO: derived_feature_extractor: 提取完成 correlation(high_0, close_0, 5), 41.153s
[2021-10-12 14:50:19.561335] INFO: derived_feature_extractor: 提取完成 correlation(high_0, open_0, 5), 41.005s
[2021-10-12 14:51:01.065639] INFO: derived_feature_extractor: 提取完成 correlation(high_0, turn_0, 5), 41.502s
[2021-10-12 14:51:39.451301] INFO: derived_feature_extractor: 提取完成 correlation(low_0, close_0, 5), 38.383s
[2021-10-12 14:52:15.469768] INFO: derived_feature_extractor: 提取完成 correlation(low_0, open_0, 5), 36.016s
[2021-10-12 14:52:54.960337] INFO: derived_feature_extractor: 提取完成 correlation(low_0, turn_0, 5), 39.487s
[2021-10-12 14:53:33.439613] INFO: derived_feature_extractor: 提取完成 correlation(close_0, open_0, 5), 38.478s
[2021-10-12 14:54:12.780168] INFO: derived_feature_extractor: 提取完成 correlation(close_0, turn_0, 5), 39.338s
[2021-10-12 14:54:50.261145] INFO: derived_feature_extractor: 提取完成 correlation(open_0, turn_0, 5), 37.473s
[2021-10-12 14:54:50.955646] INFO: derived_feature_extractor: /y_2020, 32852
[2021-10-12 14:54:54.867296] INFO: derived_feature_extractor: /y_2021, 786470
[2021-10-12 14:54:59.938134] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[871.38465s].
[2021-10-12 14:54:59.944976] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-10-12 14:56:41.130929] INFO: moduleinvoker: standardlize.v8 运行完成[101.185913s].
[2021-10-12 14:56:41.144716] INFO: moduleinvoker: fillnan.v1 开始运行..
[2021-10-12 14:56:49.332525] INFO: moduleinvoker: fillnan.v1 运行完成[8.187817s].
[2021-10-12 14:56:49.346142] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-10-12 14:56:54.738922] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[5.392789s].
[2021-10-12 14:56:54.758589] INFO: moduleinvoker: dl_layer_input.v1 运行完成[0.006877s].
[2021-10-12 14:56:57.160307] INFO: moduleinvoker: dl_layer_batchnormalization.v1 运行完成[2.391353s].
[2021-10-12 14:56:57.205306] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.029064s].
[2021-10-12 14:56:57.237794] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.022208s].
[2021-10-12 14:56:57.256967] INFO: moduleinvoker: dl_layer_maxpooling1d.v1 运行完成[0.008468s].
[2021-10-12 14:56:57.286682] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.023005s].
[2021-10-12 14:56:57.330139] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.024296s].
[2021-10-12 14:56:57.354262] INFO: moduleinvoker: dl_layer_batchnormalization.v1 运行完成[0.017557s].
[2021-10-12 14:56:57.383099] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.022547s].
[2021-10-12 14:56:57.416108] INFO: moduleinvoker: dl_layer_batchnormalization.v1 运行完成[0.024817s].
[2021-10-12 14:56:57.445115] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.020226s].
[2021-10-12 14:56:57.475595] INFO: moduleinvoker: dl_layer_batchnormalization.v1 运行完成[0.023353s].
[2021-10-12 14:56:57.511785] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.027307s].
[2021-10-12 14:56:57.535666] INFO: moduleinvoker: dl_layer_add.v1 运行完成[0.00562s].
[2021-10-12 14:56:57.559132] INFO: moduleinvoker: dl_layer_globalmaxpooling1d.v1 运行完成[0.005916s].
[2021-10-12 14:56:57.575164] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.005784s].
[2021-10-12 14:56:57.598680] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.013896s].
[2021-10-12 14:56:57.688873] INFO: moduleinvoker: cached.v3 开始运行..
[2021-10-12 14:56:57.699115] INFO: moduleinvoker: 命中缓存
[2021-10-12 14:56:57.701897] INFO: moduleinvoker: cached.v3 运行完成[0.013038s].
[2021-10-12 14:56:57.709370] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.098021s].
[2021-10-12 14:56:57.737198] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2021-10-12 14:57:00.981454] INFO: dl_model_train: 准备训练,训练样本个数:2098830,迭代次数:10000
[2021-10-12 15:31:34.182620] INFO: dl_model_train: 训练结束,耗时:2073.20s
[2021-10-12 15:31:34.283036] INFO: moduleinvoker: dl_model_train.v1 运行完成[2076.545829s].
[2021-10-12 15:31:34.298488] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2021-10-12 15:31:57.407980] INFO: moduleinvoker: dl_model_predict.v1 运行完成[23.109503s].
[2021-10-12 15:31:57.430335] INFO: moduleinvoker: cached.v3 开始运行..
[2021-10-12 15:32:05.430150] INFO: moduleinvoker: cached.v3 运行完成[7.999841s].
[2021-10-12 15:32:07.860707] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-10-12 15:32:07.865629] INFO: backtest: biglearning backtest:V8.5.0
[2021-10-12 15:32:07.867418] INFO: backtest: product_type:stock by specified
[2021-10-12 15:32:08.497282] INFO: moduleinvoker: cached.v2 开始运行..
[2021-10-12 15:32:20.065556] INFO: backtest: 读取股票行情完成:1870264
[2021-10-12 15:32:26.595631] INFO: moduleinvoker: cached.v2 运行完成[18.098357s].
[2021-10-12 15:32:29.161896] INFO: algo: TradingAlgorithm V1.8.5
[2021-10-12 15:32:30.065310] INFO: algo: trading transform...
[2021-10-12 15:32:37.493913] INFO: Performance: Simulated 183 trading days out of 183.
[2021-10-12 15:32:37.496277] INFO: Performance: first open: 2021-01-04 09:30:00+00:00
[2021-10-12 15:32:37.498223] INFO: Performance: last close: 2021-10-08 15:00:00+00:00
[2021-10-12 15:32:43.779362] INFO: moduleinvoker: backtest.v8 运行完成[35.918661s].
[2021-10-12 15:32:43.782602] INFO: moduleinvoker: trade.v4 运行完成[38.339204s].
Epoch 1/10000
4100/4100 - 219s - loss: 1.0947 - mse: 1.0947 - val_loss: 1.0138 - val_mse: 1.0138
Epoch 2/10000
4100/4100 - 204s - loss: 1.0193 - mse: 1.0193 - val_loss: 1.0135 - val_mse: 1.0135
Epoch 3/10000
4100/4100 - 205s - loss: 0.9910 - mse: 0.9910 - val_loss: 1.0145 - val_mse: 1.0145
Epoch 4/10000
4100/4100 - 207s - loss: 0.9904 - mse: 0.9904 - val_loss: 1.0141 - val_mse: 1.0141
Epoch 5/10000
4100/4100 - 206s - loss: 0.9901 - mse: 0.9901 - val_loss: 1.0127 - val_mse: 1.0127
Epoch 6/10000
4100/4100 - 206s - loss: 0.9894 - mse: 0.9894 - val_loss: 1.0127 - val_mse: 1.0127
Epoch 7/10000
4100/4100 - 206s - loss: 0.9886 - mse: 0.9886 - val_loss: 1.0132 - val_mse: 1.0132
Epoch 8/10000
4100/4100 - 206s - loss: 0.9880 - mse: 0.9880 - val_loss: 1.0133 - val_mse: 1.0133
Epoch 9/10000
4100/4100 - 206s - loss: 0.9874 - mse: 0.9874 - val_loss: 1.0136 - val_mse: 1.0136
Epoch 10/10000
4100/4100 - 206s - loss: 0.9870 - mse: 0.9870 - val_loss: 1.0133 - val_mse: 1.0133
1564/1564 - 21s
DataSource(3088e30c978347059eaa7d3cb05d4cd4T)
- 收益率46.72%
- 年化收益率69.53%
- 基准收益率-5.4%
- 阿尔法0.8
- 贝塔0.22
- 夏普比率1.49
- 胜率0.49
- 盈亏比1.26
- 收益波动率38.42%
- 信息比率0.1
- 最大回撤16.5%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-310fcae25bfd477f97f1c355819ae944"}/bigcharts-data-end